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Abstract

In this pilot project, we demonstrate a preliminary workflow for incorporating real time,
“crowdsourced” data into disaster relief routing, using search and rescue (SAR) operations in
the aftermath of the 2010 Haiti earthquake as a test setting. We develop two simple models of
relief routing: one with real time data and one without. We use road and building data from
OpenStreetMap, a collaborative mapping project that assumed a prominent role in the post-
earthquake data dissemination process, to define road networks for routing analysis. The real
time model incorporates daily updates to this road network contributed by volunteers around
the world. For the real time model, demand is predicted by filtering text messages sent to
the standardized shortcode 4636 for actionable information on collapsed structures and trapped
persons. The non-real time model predicts demand using historical demand indicators such as
building footprints.

1 Motivation

The response to the 2010 Haiti earthquake involved an unprecedented use of digital technology to
collect and disseminate information. The affected population made extensive use of cell phones, not
only for personal communication but as a means of mass communication and coordination. Responders
used aerial and satellite imagery, and digital maps derived from it, to gain situational awareness in a
poorly mapped post-disaster environment. However, without prepared protocols for integrating these
novel data sources into their ground operations, relief distributors and search and rescue teams were
unable to make full use of them.

The years since the earthquake have seen a deepened understanding of the roles new technologies
can play in disaster relief, as well as the severe challenges involved in adequately putting these tech-
nologies to use. In this pilot project, we combine recommendations from prior research with recent
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developments in the use of new technologies in disaster relief to assess the viability of real-time data
for urban search and rescue (USAR) team routing, using the response to the Haitian earthquake as
a test case. This study’s aim is to demonstrate proof-of-concept in developing potential workflows
to incorporate new data sources into vehicle routing and to scope the need for future work, rather
than to quantify true potential gains from a fully deployable set of tools. We also motivate the future
development of stochastic routing algorithms tailored to post-disaster settings and data conditions.

Humanitarian logistics since the Haitian earthquake
This work situates itself according to an increasingly organized humanitarian logistics research

agenda that has emerged in the last few years, much of which uses the Haitian earthquake as its ma-
jor framing device. This event is one of the most-studied disasters in recent years in part because it
displays extreme forms of many of the characteristics separating humanitarian logistics from commer-
cial logistics; some authors consider it a prime example of a “catastrophic” disaster, the distinction
between catastrophic and non-catastrophic disasters being based in part on the inability of the im-
pacted society to respond to catastrophe on its own [2, 10]. One of the primary reasons for using
the insufficiency of local resources as a defining characteristic of catastrophe is the vastly increased
difficulty of obtaining information when outside organizations must become involved in crisis response.
In Haiti, this information gap meant that international response agencies faced especially daunting
challenges in navigating the area and understanding which areas to prioritize for assistance.

While great progress has been made in recent years in the creation of technologies for sharing
useful information in the aftermath of disasters, it is still unclear which sources of information will
be most useful for organized crisis response. Large response agencies operate according to established
protocols and best practices, and it is often perceived as both risky and costly to change these protocols
to accommodate information streams of uncertain value. There is a growing consensus that new
data sources offer extremely valuable information whose reliability compares favorably to established
data sources if they are understood and used appropriately [7, 20], but developing frameworks for
appropriate use in real-world settings is an ongoing project.

This work is one contribution toward the research agenda outlined in [4], which reviews the real-
world problems related to vehicle routing for delivery of goods and services in disaster-affected regions,
analyzes the representation of these problems in current operations research models, and identifies
next steps for modeling, focusing on elements of humanitarian relief distribution that make these
settings differ from standard vehicle routing model settings. These elements include, among others,
uncertainty in demand and supply; incomplete knowledge of the local road network and changing road
conditions; and the need for routes to change to accommodate new information. There is a distinct
need for models that incorporate simultaneous uncertainties in supply, demand, network connectivity,
and travel times in a dynamic setting that allows operations to be modified in response to new
information [1, 19].

In this report, rather than focusing on the development of these models, we describe how data
sources of the type that appeared in the aftermath of the Haitian earthquake could be incorporated
into future models designed to accommodate them, using a simplified preliminary routing algorithm
as a starting point. Section 2 introduces our data sources and processing workflows. Section 3 details
two parallel solution approaches for using these data sources to generate USAR routes, one based in
a traditional static framework and one that incorporates real time information. Section 4 discusses
some results of the exercise and charts a course for future extensions.
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2 Innovation: Integrating new data streams into relief routing

The chief innovation introduced in this pilot project is the integration of recently introduced real-world
data streams into a workflow for humanitarian routing in real time. We identify two data streams
that, together, provide sufficient inputs (graph structure, demand, and travel time) to conduct routing
analysis. We develop a simple algorithm to use these data sources as new data arrive and use the
development of this workflow to pose questions about the adaptation of these data sources for this
purpose. In future work, this data integration will allow us to benchmark the performance of newly
developed routing algorithms against real-world scenarios using historical data.

2.1 Study setting

We take as our motivating case a single urban search and rescue team planning a route through the
Port-au-Prince urban area during a five-day-long period starting five days after the earthquake. The
scale of need over a wide area, the state of confusion, and the condition of local infrastructure would
probably have rendered it impractical to programmatically design search and rescue team routes in
response to specific requests in the immediate aftermath of the earthquake even if the information
processing framework had existed [10], but rescue operations were still needed long after the state of
information improved and organized international response was fully underway. Although the first
two days after an event are critical, survival under rubble frequently occurs well past the two-day mark
[13]. In Haiti, text messages continued to arrive up to two weeks after the event with information on
locations of trapped survivors, sent by witnesses, family members, and even the survivors themselves.

While we use USAR as a study scenario, our model of USAR operations is highly stylized; the
emphasis here is on the approach to new data sources as a sufficient support for optimization, rather
than on the current optimization algorithm’s direct applicability to the search and rescue setting.
This closely focused emphasis is in response to an identified need for adaptation to new data sources
and analytic techniques in the humanitarian sector [20], and in particular to the need to more deeply
integrate these data sources into decision-making structures.

2.2 Data sources

Although a variety of data sources, such as aerial imagery and social media services, played significant
roles in the aftermath of the earthquake and hold the potential to be integrated into routing workflows
during future crises [22], we restrict the present focus to two specific, independent sources: Mission
4636 and OpenStreetMap.

Mission 4636 was a mass communication initiative launched by a quickly organized team of
Haitians, academics, and members of the international humanitarian community shortly after the
earthquake struck. The system allowed Haitians affected by the earthquake to send informational
updates, including requests for help, via text message (SMS) to the shortcode 4636. This system was
announced over radio, one of the chief means of mass communication in the disaster’s aftermath. The
messages were translated into English, categorized by message type, and, when the message contained
location information, assigned geographic coordinates by Kreyòl-speaking volunteers, primarily mem-
bers of the Haitian diaspora, with additional contributions from nonprofits and activist groups like
Ushahidi Haiti [16, 8]. This workflow produced information that could be shared with response teams
in near-real time–the average lapsed time from receipt of a message to translation, categorization, and
submission to the data consumption stream was ten minutes, and over 80,000 messages were processed
in total [14, 16].
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This report is not the first to consider methods of estimating demand for first response from geolo-
cated 4636 messages. [3] compares the spatial distribution of 4636 messages geolocated by Ushahidi
Haiti to a point dataset of damaged buildings generated by volunteers assessing high-resolution aerial
imagery over a two-month period following the earthquake [5]. These two spatial point patterns are
highly correlated, indicating that quickly-arriving text messages can be used as an early indicator of
the spatial distribution of damage, although it remains to be seen whether this relationship is gener-
alizable to other catastrophic disaster settings. A comparison of the aerial damage assessment with a
ground survey conducted by experts suggests the imperfect reliability of the former, even for marking
highly damaged buildings [12], so more work must be done to understand the relationship between
both of these measures and ground truth.

The procedure detailed in this report is considered to be a complement to the type of analysis
described in [3]. The essential components of our procedure occur “downstream” of (that is, farther
along in the workflow connecting data collection to organizational implementation than) surface es-
timation. Our demand estimation involves filtering and processing information in the text messages,
rather than using the spatial distribution of all geocoded messages to estimate a surface; while it
would be possible to combine these techniques, a mechanism would have to be designed for doing so.

OpenStreetMap (http://www.openstreetmap.org) is a freely editable online mapping platform
with a wiki-like model designed to publish map updates from its broad user community within minutes.
Volunteers use data from a variety of sources, such as satellite and aerial imagery, public datasets,
and personal knowledge, to add information to OpenStreetMap’s (OSM) spatial database. OSM
employs a flexible data structure that allows volunteers to “tag” spatial data elements (points, lines,
and polygons) with essentially unlimited information in the form of key→value pairs. Because both
rendered maps and the underlying spatial data are made available, this rapidly updated data source
can be used directly by viewing maps or as input data for computer modeling.

In disaster settings, OSM has shown that it can generate a more complete and up-to-date map
of the affected area than would otherwise be possible. Since existing road maps of the affected
area in Haiti were incomplete, inaccurate, and insufficiently detailed for routing in the post-disaster
phase, or difficult to access if they were available at all, for many responding agencies OSM data
quickly supplemented or replaced these maps, providing critical situational awareness for international
volunteers and local organizations. Its data on transportation networks and points of interest expanded
dramatically in the days following the disaster and became a frequently used source of geographic
information for many relief organizations.

The OSM network in Port-au-Prince did not become sufficiently detailed to permit reliable routing
until three to four days after the earthquake. As explained above, we restrict the analysis to the period
beginning 1/17/2010, the fifth day following the earthquake. By this time, the OSM network had
become dense enough for almost all georeferenced text messages in Port-au-Prince to be attached to
a nearby network node with connectivity to the rest of the street network. It should be noted that
the algorithm employed below would fail if demand nodes were mapped to network nodes without
connectivity to the rest of the network.

While the software environment for routing on OSM networks has improved greatly in recent years,
many organizations, small and large, use standard commercial routing sources such as Google Maps for
basic routing needs. There are projects designed to combine the strong geographic coverage and data
integrity of Google Maps with rapidly updated information on road outages [18]. Unfortunately, these
commercial sources cannot fully address the routing needs of relief agencies. Their data structures
are not designed to be updated very rapidly with crowdsourced information on road conditions except
in highly specific proprietary systems such as smartphone-based traffic trackers; although this is
changing with the increasing presence of Google Map Maker, the data contributed to the system can

4

http://www.openstreetmap.org


Obtain building 
polygons

Filter buildings
Estimate 

demand from 
footprint

Prioritize 
demand nodes

Calculate OD 
matrix for 

selected nodes

Figure 1: Data processing workflow for non-real time model

only be accessed through Google interfaces. Furthermore, there are generally sharp restrictions on
using results from commercial routing engines, and the routing engine itself is a black box; it is not
possible, for example, to design a custom travel cost variable. For these and other reasons, we focus
on OSM as the network data source of choice.

2.3 Data processing

In this study, data for the non-real time model constitute a base to which real time data are added;
data inputs for the real time model are thus a superset of inputs for the non-real time model. The base
dataset comes from OpenStreetMap data from the Port-au-Prince metropolitan area on road networks
and locations of buildings with high estimated demand for search and rescue, such as hospitals and
schools. This dataset was chosen both because it offered a ready point of comparison between real time
and non-real time data processing from equivalent sources and because, although little mapping had
been done outside the core of Port-au-Prince by the day of the earthquake, by a few days afterward,
OSM constituted a relatively good source of information in the Haitian setting, which faced especially
poor data availability because of the destruction of baseline maps and data in the earthquake. The
real-time data add two additional and independent streams: text messages sent to 4636 and post-
earthquake road network updates from OpenStreetMap, both described above.

Figure 1 summarizes the procedure for processing non-real time data. We use a data layer of
building footprints from OpenStreetMap as it existed shortly after the earthquake, after an initial
period of spatial data entry had occurred. These building footprints are primarily sourced from
digitally traced (“heads-up digitized”) aerial imagery. We first filter buildings to include only sites
likely to have high demand and vulnerable populations, such as hospitals, schools, and orphanages,
within Port-au-Prince. This filtering results in 224 demand nodes. We use footprints to calculate
building square footage to generate a rough estimate of demand at a site. We further restrict this
set to the 133 nodes with highest estimated demand for computational ease. Because the rest of the
process requires point data rather than polygons, we convert the data to points snapped to the road
network. Figure 3 and Table 1 show a portion of the building dataset in map and tabular form.

2.4 SMS processing

Messages sent to 4636 were routed via an internet service to online volunteers and translated into En-
glish, categorized according to a quickly purpose-built categorization scheme, and manually geolocated
using whatever location information was present in the message (the SMS protocol does not send geo-
graphic coordinates, so the message itself was the only source of this information available). Both the
categorization and the geo-location were conducted by volunteers on each message individually and
involved no automated data extraction. The categorization scheme allows rapid filtering by message
type. We use only messages 1) with non-missing geographic coordinates placing the message within
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Figure 3: Locations of interest (in red) among major buildings in a portion of Port-au-Prince

Table 1: Portion of building table

ID NAME TYPE AREA

115901 OAVCT Petionville public building 0.13644

116161 Ecole Sainte Louise de Marilac school 0.20323

117571 Port-au-Prince Hospital Bernard Mevs hospital 0.89818

137063 Ecole Francklin Bois 1.24675

138129 hopital cubano-haitiano tent 1.39718

139379 OAVCT public building 0.25438

139381 Sean hotel hotel 0.20306

139408 Complex Oasis hotel 1.25601

139503 Orphelinet Croix Glorieuse orphanage 0.23783

139887 avsi hospital 5.99784

140095 DGI annex public building 0.18737

140139 Ecole Communautaire de Croix des Missions school 0.09867
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Port-au-Prince, 2) categorized as “People trapped,” “Person trapped,” or “Collapsed structure,” and
3) sent during the five-day study period, 1/17/2010 through 1/21/2010. This filtering reduces the
number of text messages from over 30,000 to 22; most of this vast reduction comes from the restriction
to non-missing coordinates.

Automated processing of text streams using natural language processing for tasks such as message
categorization and full-text geocoding is a major area of current research, and there is a growing
body of literature applying these techniques to disaster data [11, 6, 21, 17]. We instead rely on
human-powered information processing. Even though our entire population of messages was inter-
preted manually, we still lose useful information by relying on this interpretation exclusively, since
the categorization employed has been found to have been unreliable. This unreliability largely came
in the form of categorizing general distress calls or other vague messages with too much specificity
[15, 9].

2.5 Road processing

To construct a retrospective set of road networks that reflects the state of information on each day
of the study period, we begin by making a data extract from an archived copy of OSM as it existed
immediately before the earthquake. We then apply each daily “changeset,” a record of all data updates
performed over the course of a period, in sequence, generating a full copy of OSM’s data for Haiti for
each day of the study period. These datasets are then converted into Esri geodatabase format using
the ArcGIS Editor for OpenStreetMap.

We then design network configuration rules for creating crude but serviceable network datasets
that can be used for routing. The most critical component of this configuration for our purposes
is the construction of a travel cost variable. The mandatory “highway” tag contains the road class
of a segment (as determined by the volunteer entering the data). Travel cost on each road segment
is estimated by the segment’s total length multiplied by a parameter c depending on this variable:
c = 1 for primary roads, c = 1.2 for secondary roads, c = 1.4 for tertiary, residential, and unclassified
roads, and c = 1.6 for other minor roads. The parameters used are essentially arbitrary and serve as a
stand-in for empirically determined parameters derived from the literature or from ground experience;
travel costs associated with different road types are likely to vary by locality. Since these parameters
simply scale travel cost based on shape length, they are functionally unitless and have only relative
meaning.

Volunteers used OSM’s key-value data structure to store information about road traversability
(e.g., impassable → ‘yes’). While it would have been possible to include this information in the
network dataset creation, we elected not to in the present work because comparing the results of
the real time and non-real time models would have required penalizing the non-real time model for
sending routes over non-traversable roads; this is a straightforward extension left for future work.

Each of the constructed network datasets corresponding to one day of the study horizon is used
together with the corresponding day’s list of demand nodes to construct an origin-destination (OD)
matrix storing pairwise travel times. These OD matrices are generated using the OD matrix solver
built into the geographic information system used in the project, ArcGIS. This solver is a proprietary
implementation based on Dijkstra’s algorithm for finding shortest paths and is integrated directly
with the ArcGIS network data structure. Since roads were being added and corrected very rapidly
over the study period, the estimated travel time between two points could change dramatically in a
short time.

While this project implemented the road processing component of the workflow in ArcGIS via
Python, it is also possible to do the same work using open source tools, including various combina-
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tions of PostgreSQL, pgRouting, osm2po, and the Python library networkx. Implementing the full
procedure, combining data processing and our custom algorithm in a fully open source framework, is
the subject of current work.

3 Solution approach

We model the scenario as an orienteering problem. The decision-making unit, a single mobile team, is
given a list of demand nodes, each with an associated demand (score) and location. The team moves
along a graph consisting of vertices connected by edges, each with an associated travel cost (considered
here to be travel time). Demand nodes are located on these vertices. In addition to travel time, each
node imparts a stopping time that is assumed to be an increasing linear function of demand at that
node. The objective is to maximize the total demand served over the study period by selecting a set
of nodes to visit, and the order in which they are visited, each period, subject to a maximum time
expenditure per period. Furthermore, travel time, stopping time, and local demand are assumed to
be normally distributed random variables; however, the team is not able to change the selected nodes
or routes based on additional information obtained while traversing the route. The team services each
stop locally rather than transporting people or goods to a central location.

The overall procedure is diagrammed in Figure 4. We start by building the network graph with
real-world data as described above, using a standard origin-destination (OD) matrix solver based on
Dijkstra’s algorithm to find pairwise shortest paths, and passing the resulting matrix to a MATLAB
program as a model input. The elements of this matrix are modeled as the means of normally
distributed random variables with a known variance.

The program employs a simple greedy algorithm that selects a demand node to visit one at a time,
based on a local maximization, and then passes the node and its associated parameters (demand and
service time, both random variables subject to variance) to a standard traveling salesperson problem
(TSP) genetic algorithm to solve for the shortest path connecting all selected nodes; this selection
process repeats until the sum of estimated travel times and service times exceeds the time allotment
for the period, and the algorithm returns an ordered list of nodes to visit. This list is passed back
into ArcGIS and visualized as a route with real-world paths (Figure 5).

When the real time version of the algorithm runs, this process is modified by updating the model
inputs at the beginning of each period: the set of candidate nodes is augmented based on information
received over the course of the previous period, and the OD matrix is replaced with a new one
generated with an updated graph and set of nodes.

We assume that local demand Di, travel time cij , and service time Si are normally distributed
random variables with standard deviations estimated as a fraction of the sample means. We assume
this fraction to be 0.1 for real time data and 0.2 for non-real time data, reflecting our assumption that
real time data provide more reliable information on current conditions than data collected before the
onset of the disaster. We assess model performance by estimating true values for Di, cij , and Si from
their observed values, repeating this procedure over 50 iterations.

3.1 Optimization model

We begin by localizing the problem and creating a scaled down model with minimal data inputs to be
solved in AMPL, a linear programming solver. The simplified model solves a single-vehicle problem
maximizing demand served within a deadline.
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Notation

0 Depot designation

i, j Demand node indices

t Period index

Di Demand at node i

cij Travel time from node i to node j

Si Stopping time at node i; linear function of Di

Tmax Total time available per period

N Set of candidate (unvisited) demand nodes

Nt Set of new candidate nodes in period t, from 4636 data

Vt Set of nodes visited in period t

DVt Total demand at nodes visited in period t

Wi(N) =
Di∑

j∈N cij
, Demand divided by total distance to all other nodes

Wi(Vt) =
Di∑

j∈Vt
cij

, Demand divided by total distance to nodes visited in t

OptRoute(Vt) Optimal ordering of nodes in Vt; output from TSP

T (Vt) Total time spent on route in period t; output from TSP

Variables:

Xij 1 if team travels from node i to j, 0 otherwise

Yi 1 if team visits node i, 0 otherwise

Objective function:

Maximize:∑
i

YiDi (1)

Subject to:∑
j

∑
i

Xijcij + YiSi ≤ Tmax (2)

∑
j

Xij =
∑
j

Xji (3)

∑
j

Xij = Yi (4)

Although the AMPL model is able to efficiently solve the basic problem, it is unable to accommo-
date the following additional requirements:

• For both the real time and non-real time model, we require a constantly updating model over a
course of time (five days). AMPL would only be able to solve for one day at a time and we would
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need to manually update all aspects of the model after each day, i.e., removing nodes visited and
updating with real time OD matrices.

• One motivating factor behind the inclusion of real time data in the model is the likelihood of
reducing variance in demand, stopping time, and travel time. AMPL would require datasets to be
generated ahead of time to be fed into the model. Since we planned on running this simulation at
least 50 times, creating 250 (50 ∗ 5 days) datasets would be highly inefficient.

• In TSP modeling, subtour eliminating constraints are needed to ensure that all nodes are visited
in one single trip with a single starting and ending point. In this model, the constraint that every
node must be visited is relaxed since the objective is based on maximizing demand satisfied in
a limited time, but subtour constraints remain. The number of subtour eliminating constraints
needed is 2n, where n is the number of nodes. Even with only 10 nodes, we would already require
1024 subtour constraints.

Algorithm 1 Master algorithm

Input N from OpenStreetMap building data
Input network dataset from OpenStreetMap
Apply ArcGIS origin-destination algorithm to N to generate OD = [cij ]
Rank nodes by Wi(N)
Set depot: 0 = Wmax(N)
Set variance of Di, Si, cij to 20% of sample means
for t← 1 to 5 do
if realtime then

N ← N ∪Nt and update ranking of nodes by Wi(N)
Rebuild network dataset with new road data
Recalculate OD with new network dataset and candidate nodes N
Set variance of Di, Si, cij to 10% of sample means

end if
Initialize Vt = {0}, T (Vt) = 0
while T (Vt ∪ {Wmax(Vt)}) ≤ Tmax and N 6= ∅ do

Vt ← Vt ∪ {Wmax(Vt)}
N ← N \ {Wmax(Vt)}
Recalculate Wi(Vt) and select new Wmax(Vt)
Apply TSP genetic algorithm to Vt ∪ {Wmax(Vt)}
return T (Vt ∪ {Wmax(Vt)})

end while
return Vt ordered according to TSP and display route in ArcGIS
return DVt

end for

3.2 Implementation

To address these needs, we develop a heuristic in MATLAB. Figure 4 is a schematic representation
of the MATLAB procedure. The entire procedure described in the master algorithm is executed
in two distinct sections: ArcGIS is used to prepare spatial data inputs and to run the OD matrix
solver, and MATLAB uses these inputs to execute the algorithm and call the TSP genetic algorithm
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Figure 5: An example of a recommended route. Map source: OpenStreetMap.

as a subroutine. Data preprocessing is accomplished with a variety of tools, including several small
programs written by the OpenStreetMap community to facilitate extraction and manipulation of
OSM data. On a computer with a quad-core 2.6 GHz processor, execution time for both real time
and non-real time models together is approximately 15 minutes.

4 Results and analysis

We run the simulation under four different sets of conditions, each with a different set of features
included in the real time component of the simulation. These combinations are summarized in Table
2. In each of the first three simulations, one of the enhancements in the real time model was omitted.
Simulation 4 includes all differences between the two procedures. Each simulation is run over 50
iterations, with resulting boxplots in Figures 6–9.

The current problem formulation assumes that real time demand data is essentially equivalent to
non-real time demand data except that it is subject to lower variance in local demand, travel time,
and stopping time. This assumption does not permit an assessment of the relative merit of new data
sources; because the real time model simply has lower variance and more data points from which to
draw a solution, it generates at least equivalent model performance essentially mechanically. That
said, a comparison of the two models’ output does allow us to examine how much the additional real
time data contribute to solutions.

In all four simulations, there is little performance difference between the models. This is unsur-
prising given the relatively modest number (22) of additional demand nodes in the real time model
and the conservative estimated demand at those nodes. That said, in all cases, the performance of the
real time model relative to the non-real time model improves noticeably after the first period. The
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Figure 6: Simulation 1

real time model is replenished with new data points after the first period and gains a more detailed
road network as time goes on, which tends to increase the difference in data inputs between the two
models with time.

New nodes Map changes Different variance

Simulation 1 X X

Simulation 2 X X

Simulation 3 X X

Simulation 4 X X X

Table 2: Four sets of simulations

4.1 Next steps and recommendations

The work presented here is only a preliminary step in the development of a set of deployable relief
routing models and should be regarded as a demonstration of the feasibility of using the data sources
described at an organizational level and a motivation for the work described in the following sections
of this report. Among the most immediate limitations of the approach demonstrated here are as
follows:

• We reduce the problem here to a single mobile team. Expanding the scenario to multiple depots
and teams within this algorithm requires determining stop order using algorithms modeling the
vehicle routing problem rather than the traveling salesman problem.

• The model presented here assumes that all data inputs have already been validated and all addi-
tional information is beneficial. Assessing the validity of crowdsourced information in crisis settings
is a highly active area of research, and determining appropriate methods of filtering data before
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Figure 7: Simulation 2

Figure 8: Simulation 3
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Figure 9: Simulation 4

sending it to end users (that is, into a routing algorithm such as this one) is a critical element of
any usable tool.

• We also do not address the potential for bias in crowdsourced data. The types of bias introduced
by crowdsourced data and the effect of any bias on the validity of model results is its own important
research topic.

• Several parameters, including the variance of real time and non-real time data and the cost multi-
pliers for each road type, are essentially arbitrary in the present work and should be replaced with
empirically derived numbers.

• We model service time as a linear increasing function of local demand with a normal distribution.
More appropriate estimates of service time depend on the setting.

• Future work should take into account “spoke” traveling where either the full SAR team or a portion
of it must return back to the base node after visiting certain nodes to drop off individuals requiring
medical attention or to replenish supplies.

• The real time data processing workflow here does not incorporate information on non-traversable
roads, which would allow the solver to avoid road segments that are not traversable due to flooding,
debris, damage, and the like. This is a straightforward extension of the network dataset creation
step; assessing the relative usefulness of this inclusion requires adding a realistic penalty to the
non-real time model for designing routes over roads that the team is unable to traverse.

• The current optimization model is updated with new data on a daily basis. To make the model
more reactive to real time data, more frequent updates should be considered.

• Finally, the SAR team itself gathers important information about demand and road conditions.
More detailed models should capture this information in addition to exogenous updates.
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