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Summary

The objectives of this project are (1) to make use of the newly emerging transit data sources
for evaluating the variations in transit services (especially headway), and (2) to help passengers
find optimal routing strategies to hedge against these service variations.

The project first develops a data analysis tool (Transit Data Viewer) that is capable of build-
ing and visualizing empirical distributions of key transit operational parameters (headway, seg-
ment running time, dwell time and deviation from schedule) using space-time trajectories of
transit vehicles. Statistical analysis is then performed to fit the processed headway data using
various distributions.

Based on the best fitted headway distribution, the project develops and implements a transit
routing tool built on the notion of hyperpath (Transit Router). Note that transit systems are
affected by variations in road traffic conditions and demand patterns, as well as major disrup-
tions caused by extreme weather conditions, serious traffic accidents, unforeseeable mechanical
failures and human errors. To cope with uncertainty, the proposed routing tool aims at finding
an optimal hyperpath to minimize the expected journey time.

The proposed tools are evaluated in a large-scale case study built from real data provided by

the Chicago Transit Authority.



Chapter 1

Introduction

1.1 Background

Travel reliability is a critical dimension in user experience of public transportation services.
A recent survey of commuters from the Chicago metropolitan area (Nie et al. 2010) reveals that
reliability is the second most important factor that affects commuters’ route choice, next only
to travel time. Transit systems are affected by variations in road traffic conditions and demand
patterns, as well as major disruptions caused by extreme weather conditions, serious traffic ac-
cidents, unforeseeable mechanical failures and human errors. While these uncertainties could
adversely disrupt transit services, their overall impacts are rarely documented and understood
in existing systems. As a result, neither transit operators nor transit users are able to make
proactive decisions to ensure travel reliability. Ignoring the impacts of uncertainties often result
in misallocation of limited resources in the transit system. From the user point of view, the lack
of reliability either encourages overly conservative risk-averse behavior or leads to uncomfort-
able, sometimes disastrous, disruptions. Not surprisingly, almost half of the commuters in the
aforementioned survey describe their transit service as “unreliable”.

Thanks to the revolution in information technology, many transit agencies now have the ca-
pability to track their entire fleets, make short-term projections, archive the data and distribute
passenger information, all in real time. Figure 1.1 shows the web interface of the Bus Tracker

Application provided by Chicago Transit Authority (CTA), which employs the GPS-based auto-
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matic vehicle location (AVL) data to project the arrival times of the next transit vehicle at any stop
on any route. Similar passenger information applications can be found in other major US cities,

such as New York and Washington D.C. These

\eta) ctabustracker.com

new systems not only enable passengers to use
transit information in the real time to improve

their journey experience, but also make available

ESTIMATED ARRIVAL | BUS #

3 MINUTES a large amount of operational data that can be in-

To 38th/5t Louts

Sl LULILESH  corporated into better decision making for both

24 18 MINUTES

TaaTth

passengers and agencies.
22 MINUTES
1685

To 38th/5t Louts

1.2 Objectives

The overarching goal of this project is to (1)
Figure 1.1: CTA BusTracker Web Interface

make use of these newly emerging data sources
for evaluating the variations in transit services (es-
pecially headway), and (2) help passengers find optimal routing strategies to hedge against these
service variations. To this end, this project first develops a data analysis tool (Transit Data
Viewer) that is capable of building and visualizing empirical distributions of key transit oper-
ational parameters (headway, segment running time, dwell time and deviation from schedule)
using space-time trajectories of transit vehicles. Statistical analysis is then performed to fit the

processed headway data using various distributions.

Based on the best fitted headway distribution, the project develops and implements a transit
routing tool built on the notion of hyperpath (Transit Router). A hyperpath represents a sequence
of routing strategies rather than a simple path consisting of stops. Routing based on hyperpath
promises to make better use of availability of alternative routes in the transit systems. It also

offers the flexibility to incorporate real-time information, such as the arrival times of all transit

vehicles approaching a stop. It is worth noting that the boarding decision at a stop depends on
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the waiting time as well as the remaining travel time to the destination once the selected transit
line is boarded. This remaining travel time, in turn, is affected by future events such as waiting
at subsequent transfers and travel between stops. As a result of the aforementioned system
variations, the remaining travel time is not dictated by the published schedule. Accordingly,
decisions have to be made according to what are likely to happen in the future. In light of this
observations, the proposed tool copes with uncertainty by choosing an optimal hyperpath to
minimize the expected journey time.

It is worth emphasizing that the proposed routing tool fully utilizes the archived operational
data obtained from the new passenger information systems. In particular, these data will be used
to characterize underlying stochastic properties of transit systems. Of these, the most important
for our purpose are the headway distributions of all transit lines, which determine, among other
things, the expected waiting time and line boarding probabilities at transfer stops. It has been
commonly assumed in the literature that headways are exponentially distributed. With this
simplifying assumption all headway distributions can be fully characterized without using any
archived data - note that for the exponential distribution the standard deviation and mean are
equal and can be reliably estimated using the scheduled headway. Moreover, exponentially
distributed headways dramatically reduce the efforts for computing expected waiting times and
boarding probabilities. However, our preliminary investigation shows that this assumption not
only is poorly supported by empirical evidence, but also leads to sub-optimal route choices.

Finally, the proposed tool will be evaluated using a large-scale case study, which will be built

from real data provided by the Chicago Transit Authority.
1.3 Potential impacts

The proposed tool helps transit users save travel time and improve travel reliability by mak-
ing better informed routing decisions. In the long run, the improved user experience could

attract more passengers to use mass transit, and thereby promoting sustainable transportation
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by reducing driving.

The results from this projet will also help understand the nature of uncertainty in large-scale
transit systems. Specifically, statistical analysis will (1) determine the types of distributions that
best fit headways and inter-stop travel times obtained from AVL data; and (2) reveal the key
contributing factors to headway variations. With the above information, passengers could eval-
uate the reliability of their trips (such as the likelihood of arriving at their destination on-time),
and agencies could assess the overall reliability performance of their systems. Understanding
these stochastic properties could also help transit agencies design measures that aim to reduce

variations.
1.4 Organization

The report is organized as follows. Chapter 2 briefly reviews the literature of the hyperpath
problem. Chapter 3 introduces the methodology, including the concept of hyperpath, the basic
analysis of common-lines problem with general headway distributions, and the algorithms for
finding optimal paths in a transit network. Chapter 4 describes the data used in the case study;,
presents various analysis results obtained using Transit Data Viewer. Chapter 5 performs a
statistical analysis to fit the headway data to various distributions. Various numerical experi-
ments are performed in Chapter 6 to examine the impacts of service regularity on route choice,
as well as verifying the analytical results using simulation. The results of a large-scale case
study is reported in Chapter 7. A user manual for Transit Data Viewer and Transit Router is

provided in Appendix B.
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Chapter 2

L iterature review

The concept of hyper-path appears to originate from Chriqui & Robillard (1975)’s study on
common bus lines. Using a linear corridor similar to Figure 2.1 (with only two stops), this seminal
paper shows that passengers can select a set of attractive lines and board the first arriving bus in
that set in order to minimize the expected total journal time. Spiess & Florian (1989) extends this
notion of strategy to a general transit network, namely, the choice of an attractive set of lines is
considered at each node where boarding occurs.

Nguyen and Pallotino (1988) interpret the above strategy as a hyper-path, which is an acyclic
directed graph. They propose both label correcting and label setting algorithms for finding
the optimal hyper-paths between a pair of nodes. The above hyper-path routing model has
been incorporated by many into transit assignment (see e.g. Nguyen & Pallottino 1988, Spiess
& Florian 1989, de Cea & Fernandez 1993, Wu et al. 1994, Cominetti & Correa 2001, Cepeda
et al. 2006), which focuses on properly modeling the interaction between routing behavior and
congestion in transit.

Central to the common-lines problem is the calculation of expected waiting time at stops.
Early studies indicate that the expected waiting time for a single transit line can be estimated
from the mean and variance of headway (see e.g. Welding 1957, Holroyd & Scraggs 1966, Osuna
& Newell 1972, Seddon & Day 1974). When multiple lines are present, the expected waiting

time depends on the probability of taking each line (line boarding probability), which in turn is
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B
02 01
A A
(a) A three-stop-two-route transit network (b) A hyperpath between stops A and C
(line lables are route name) (line lables are boarding probabilities)

Figure 2.1: lllustration of the hyperpath concept in a three-stop transit network

affected by the availability of information, routing strategy and headway distributions. Of these,
the type of headway distributions affects the computation of expected waiting time the most.
With Assumption 2 above, headways are exponentially distributed. Consequently, the expected
waiting time can be computed in closed form, which greatly improves the computational effi-
ciency in optimal hyper-path search. However, pure random arrival of transit vehicles implies
that the expected waiting time for any given line equals its average headway regardless of pas-
sengers’ arrival time, which seems overly conservative except for bus services with very small
headwways (O’Flaherty & Mangan 1970).

Other types of headway distributions have been considered by several authors. Marguier
& Ceder (1984) analyze the waiting time and line boarding probabilities in a two-line example,
assuming the headways follow either power or Gamma distribution. Hickman & Wilson (1995)
model bus headway using lognormal distributions in a simulation study. Gendreau (1984) pro-
posed to approximate the line headway distributions by Erlang distribution, which is a special
case of Gamma distribution but has better analytical tractability. Erlang distributions are also
adopted in Bouzaiene-Ayari et al. (2001) and Gentile et al. (2005) to model route choice in the

common-lines problem. More recently, Ruan & Lin (2009) fit a sample of observed headway
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data collected in Chicago to four different distributions, and discover that Gamma distribution
achieves the highest goodness-of-fit. Theirs appears to the only recent empirical study on bus
headway distributions identified in our reading of literature.

The role of real-time information in the common-lines problem was addressed in Hickman
& Wilson (1995), which allow waiting time distributions to vary as passengers gather more in-
formation after arriving at the stop. Accordingly, passengers would only board the transit ve-
hicle arriving at time t if the expected travel time upon boarding is smaller than the minimum
expected travel time if the vehicle is skipped. Because each boarding decision invokes an evalua-
tion of expected travel time, computing boarding probability is not analytically tractable. Instead,
simulations are used to evaluate the value of information in a rather small case study. Gentile
et al. (2005) assumes that the arrival time of next transit vehicles can be accurately projected once
passengers arrive at the stop. Accordingly, passengers will always board the transit vehicle that
has the minimum total travel time (projected waiting + expected travel time upon boarding). The
assumption of “accurate real-time information” is adopted in this study because of its tractabil-
ity, in terms of both computation and calibration. The impact of real-time information on transit

routing is not considered in this project.
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Chapter 3

Methodology

3.1 Basic common-lines problem

The basic comment-lines problem that forms the cornerstone of the classical hyper-path mod-

els is built on the following assumptions Gentile et al. (2005).

Assumption 3.1 Transit vehicles of different lines arrive at stops randomly (i.e. following a poisson

distribution), and independent of each other.
Assumption 3.2 Bus line travel time is deterministic.

Assumption 3.3 Passengers arrive at stops randomly (i.e. following a poisson distribution). This implies
that they do no adjust their arrival time according published schedule, either because they have no access

to or have no confidence on such information.

Assumption 3.4 Passengers do not have any real-time information (e.g. arrival times of the next vehicle),
but can reliably estimate the remaining line travel time, i.e., the expected travel time from the stop to the

destination, once boarded a vehicle of the line.
Assumption 3.5 Passengers aims to minimize their total expected travel time to the destination.

Our methodology will adopt all but the first assumption. The reason why the first assumption is

excluded is that it poorly aligns with empirical evidence, as this report will show later.

11
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We consider route choice at a stop where the number of available transit lines is denoted as
L ={1,2,.., M}. Without loss of generality, we assume any line | € L can reach the passenger’s
destination D, regardless of the actual path from the stop onward. Let s, be the expected waiting
time upon boarding line I, and ﬁ. and W, be the random headway and waiting time associated
with line I. The probability density functions of h; and W, are denoted as g;(-) and f,(-), respec-
tively. Accordingly, G,(-) and F(-) represent the cumulative distribution function of h; and W,. A
passenger at stop i should first determine which lines are attractive, i.e., they should be consid-
ered in decision-making. Finally, let R € () denote an attractive set, where Q) is the collection of
all subsets of L.

When real-time information is not available, passengers will simply board the first arriving

vehicle in R. Thus, the probability to board line | when W, = t, denoted as ,(t), is

(1) = Pr(W) = )Ilicr/qy Pr(Wi > t) = fi()er/y (1 — R(t)) (3.1)

Hence, the overall probability of boarding I, denoted as 7, is given by

7 = /0 (1)t (3.2)

The probability that the waiting time at the stop equals t, denoted as Wg(t), is

0(t) =Y (1) (3.3)

leR

Therefore, the expected waiting time at the stop, denoted as E[Wg]|, can be obtained as

E[Wg] = /0 (1)t (3.4)

The expected total travel time to the destination, starting at the stop and corresponding to an

attractive set R is then

Ur = E[WR] + Z S| (3.5)
IeR

Since the line waiting time W, is difficult to observe, its PDF is typically estimated from that of

the random headway ﬁ. using the following relationship (Larson & Odoni 1981)
fi(t) = (1 —Gi(1)) (3.6)
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where A = 1/E(ﬁ|), or the average arrival rate. Equation (3.6) may be derived using different
approaches. Appendix A details one derivation based on renewal function.

Given f(t), it is easy to see that the corresponding F,(t) can be obtained by

R(t) = /0 " (w)dw @3.7)

Therefore, for a general distribution, the calculation of 77; and E[Wgr] may involve a two-dimension
integration (cf. Equation (3.1) and (3.7)). Since the calculation of attractive set R involves enu-
merating all possible combination of lines at the stop, the two-dimension integration is a compu-
tational challenge for large-scale network.
Passengers will always choose the best attractive set R* such that their expected travel time
ur- to the destination is minimized, i.e.,
ug- < Ur = E[Wg]+ ) s, VR € O (3.8)
IeR
Searching R* can be a computationally challenge task for large M since the size of Q is 2M. For
special headway distributions, the efficiency of the search process may be significantly improved,

as shown later.
3.2 Special cases

There are three special cases when closed form formulae are available. When h is exponen-
tially distributed, we have closed form formulae for line boarding probabilities and expected

waiting time by following the above equations (see e.g. Spiess & Florian 1989).

Ay

— 3.9
& YkeRr Mk (39
1
E[We] = (3.10)

When the headway h, is deterministic, the PDF of waiting time distribution can be calculated

as

CCITT 13
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G M YOSt/
7 o, otherwise

Then the route choice probability and expected waiting time is

7T|:)\|/OO H (1—/\jt)dt (3.11)
0 jeLn\{1}

E[Wg] = / [T(1—At)d (3.12)
jeLn

When the headway ﬁ| follows Erlang distribution, we have closed form for waiting time
distribution. Note that Erlang distribution is a special case of Gamma distribution with shape
parameter k; being an integer number and rate paremeter A;. Given that, the PDF of the waiting

time distribution can be calculated
/\
fi(t) = Zle Mt Z S(at)" (3.13)

Accordingly, the CDF of waiting time can be calculated by integration.

K—1
R = /0 I)<\|I g MW Z L 7\|W
k| 1 l
- 1eMy o ((1—k—|)(/\|t) ) (3.14)
n=0 """

Given CDF and PDF of the waiting time distribution, the route choice probability can be

calculated in Equation 3.2 with one-dimension integration.
3.3 Representation of transit network

A stop in a transit network is represented in this study as shown Figure 3.1. At the center of
the stop layout is the so-called transfer node, represented using a solid blue square in the figure.
For each transit line that passes a stop, two dummy nodes are created. The dummy nodes are
corresponding to alighting and boarding maneuvers. For easy reference, the node associated
with alighting is called a “transit node”, represented as a solid blue circle in the figure. The node
associated with boarding is called “dwell node”, represented as solid grey circle in the figure.

Accordingly, there are five types of links as detailed below.

CCITT 14
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Boarding link Connecting a transfer node to a dwell node

Alighting link Connecting a transit node to a transfer node

Dwell link Connecting a transit node to a dwell node

Transit link Connecting dwell node to the transit node at the next stop

Walking link Connecting one transfer node to a neighboring node through walking. Walking

links are created between stops that are deemed by the modeler as “close enough” for

walking at a normal speed (e.g. 5 km/hour).

In this study, we always assume a journey starts at a transfer node for simplicity.

The sets of transit, dwell and transfer nodes will be referred to as N¢, Ng and Ns, respectively.

- Transfer node

r-—- — — — - = -1 - - - - - = 1
Walking links to and from another tranfer nO(ile

Transit node Dwell node
Transit link Dwell link Trasnit link
—q4r - - —t
[ « [
| Alighting link _ - Boardinglink |
| b g I
| Transfer node |
[ I |
| Alighting link *s. Boarding link |
Trasnit link | Dwell link | Trasnit link
————— =
| |
| Transit node Dwell node |
| |

Extended layout of a stop

Figure 3.1: Network representation of a basic transit stop
served by two lines

The set of all nodes N = N¢ J Ng U Ns.
The sets of boarding, alighting, dwell,
transit, and walking links are re-
ferred as Ay, Aa, Ag, At and Ay, re-
spectively, and the set of all links
A = AJUAUAJUAUAW. Fur-
thermore, each link a is associated
with three attributes: T; as the running
time, and h; and v, as the mean and
variance of the headway of the tran-

sit line associated with the line when

applicable. Importantly, these attributes are set accordingly to the link type, as explained below:

a € A, h; and v, are mean and variance of the headway of the transit line associated with the

line when applicable. 7, = 0.

a€ Ay hy =0,v, = 0. 13 is set to the lost time due to alighting.

CCITT
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ac Ad ha :O,Va :O,Tazo.
a e At hy =0,vy = 0. 73 is the expected running time between the corresponding stops.

€ Ay hy =0,v, = 0. 1, is the walking time.
3.4 Algorithms for finding optimal hyperpaths in a network

We first explain how R*, the optimal attractive set, may be identified in the common-lines
problem. Algorithm 1 details the procedure of a widely adopted algorithm called the greedy
method, which adds candidate lines into the attractive set according to an increasing order of

5. Itis clear that the above algorithm has a complexity of O(M + log(M)) (log(M) refers to the

Algorithm 1 Greedy algorithm for finding R*
1. initialize:
Rank L =1,2,..., M such thats; < sp,---,< sm.
Set R = {1}. Compute ug using Equation (3.5). Set | = 2.
while s; < ug do
SetR=RUlI
Compute ug using Equation (3.5).
Setl=1+1.
end while
Set R* = R.

effort of ranking), which is much better than having to search every element in (). Unfortunately,
the greedy method guarantees to find the optimal solution only when the headway is exponen-
tially distributed. Note that the correctness of the greedy algorithm depends on the following
relationship

Ug < UR < Sp41 < UR,Vp={1,..,M -1}

where R = {1,.,p} and Q = RU{p +1}. When EWgr and 7 are given by (3.10) and (3.9)

respectively, we have

1+ TS + Api1S 1 TS
Uo < Un uo = Yaep S+ Apia pHL _ + Yiep 7S]

Yiep M+ Apta Yiep A
14 Yiep s
=5y < ———P Ty
P Yiep M R
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Since the above proof relies on (3.10) and (3.9), it does not hold for general expressions of E(WR)
and ;. In those cases, the greedy algorithm may only be considered a heuristic. Our numer-
ical experiments include examples that show the greedy algorithm fails to identify the optimal
solution when the headway distribution is Erlang.

For general headway distributions, the following brute-force enumeration algorithm has to

be used to avoid sub-optimal solutions.

Algorithm 2 Enumeration algorithm for finding R*
1. initialize:
2. Setug = oo.
3 forallR e () do

4 Compute ug using Equation (3.5).
5 if ugr < ug then

6: Setug; = ur, R* =R.

7 end if

8: end for

We are now ready to present the algorithm for finding optimal hyperpaths to a given des-
tination stop, denoted as S, from all other stops in a transit network. Like a standard shortest
path problem, this problem can also be solved based on dynamic programming. The main dif-
ference is that the decision at a transfer node (i.e. the so-called embedded problem in dynamic
programming) may involve choosing a subset of outgoing links, as opposed to just one link as
in the standard shortest path problem. Either label-correcting or label-setting methods may be
used. We first consider label-correcting algorithm, which is described in Algorithm 3. In the de-
scription, Q is the set of candidate nodes; R; is the current attractive set at link i; u; is the optimal
total expected travel time starting from stop i; and 1(i) and O(i) denote the set of incoming and
outgoing links associated with node i.

A few remarks are in order here about the algorithm. First, the above algorithm is designed to
deal with general headway distributions. A more efficient design may be achieved if all headway
distributions are exponential. Second, the candidate list Q is implemented as a first-in-first-out

queue. Other data structures may be used, such as a combination of two queues or a queue and
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Algorithm 3 Label-correcting hyperpath (LCH) algorithm
1. initialize:
22 VieN,setRj =@; uj=inf
3 Setus =0;Q = {S}
4: while Q # @ do
5: Take node j from the front end of Q. Remove j from Q.
6 for all links a € I(j) do
7 Set i as the tail node of a.
8: ifi € Nrand a € A, then
o Construct a common-lines problem as follows.
10: SetL={l|Vl € O(i)n Ay}
11: For each | € L, the line travel time s, is set to 7; + u, where | € 1(k).
12: Call Algorithm 1 or 2 to get R* and ugr+ with L as the input.
13: if ugr- < uj then
14: Set u;j = ur+, Rj = R*.
15: ifiisnotin Q then
16: Insert i to the end of Q.
17 end if
18: end if
19: else
20: Set U = 1, + u;.
21 if U < uj then
22: Setui=U,Rj = {a}
23 if i isnotin Q then
24: Insert i to the end of Q.
25: end if
26: end if
27 end if
28: end for
29: end while
CCITT 18
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a stack, one of which is used to hold nodes that have been scanned before.

The label-correcting algorithms require repeatedly visiting nodes to update their labels. In
the worst case, it requires up to ||[N — 1|| visits per node to find the optimal path. This property
could become a performance bottleneck as the network become denser (i.e. higher link to node
ratio), although label-correcting algorithms are competitive on typical highway networks which
has a link-to-node ratio of about 3 to 4. Transit networks, by construction, would have a much
higher link-to-node ratio because of the common lines. To improve computational performance,
this study also implements a label-setting algorithm, as described in Algorithm 4. Note that the
label-setting and label-correcting algorithm differ from each other only on the implementation of

Q.
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Algorithm 4 Label-setting hyperpath (LSH) algorithm

1: initialize:

22 VieN,setRj =@; uj=inf

3. Setus = 0;Q = {S}, which is implemented as a binary tree ranked based on u;.
4: while Q # @ do

32:

Take the first node j (u; is the minimum among all j € Q). Remove j from Q.
for all links a € 1(j) do

Set i as the tail node of a.
ifi € Nt and a € A, then
Construct a common-lines problem as follows.
SetL={l|VI € O(i) N Ap}
For each | € L, the line travel time s, is set to 7y 4+ ux where | € 1(k).
Call Algorithm 1 or 2 to get R* and ug- with L as the input.
if ug+ < uj then
Set U; = ugr+, Rj = R*.
ifiisnotin Q then
Insert i into Q based on u;.
else
Remove i from Q, and re-insert it back based on the updated u;.
end if
end if
else
SetU = 75 + ;.
if U < uj then
Setui=U,Rj = {a}
ifiisnotin Q then
Insert i into Q based on u;.
else
Remove i from Q, and re-insert it back based on the updated u;.
end if
end if
end if

end for

33: end while
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Chapter 4

Data and statistical analysis

4.1 Data sources

Two main data sources from Chicago Transit Authority will be used to construct the case
study. The first source is the General Transit Feed Specification (GTFS) data published by CTA
through Google’s GTFS project. The GTFS data, which contains schedules and associated ge-
ographic information, will be used to create the transit network topology. In general, GTFS
feeder may contain the following files: agency, stops, routes, trips, stop times, calendar, calen-
dar_dates, fare attributes, fare_rules, shapes, frequencies and transfers. A detailed illustration
of GTFS feeder can be found at https://developers.google.com/transit/gtfs/. Some important
concepts are illustrated regarding GTFS files, i.e. pattern, route and trip. Pattern is a geographic
sequence of points. Each pattern defines a unique driving path for a bus. Route is the bus num-
ber or name. However, one thing worth noting is that one individual route may contain multiple
patterns. A route may have rush hour pattern, non rush hour pattern and weekend pattern. Trip,
on the other hand, is a specific incidence of bus run. Multiple trips consists of the operation of a
bus. The trip ID uniquely defines the starting time and pattern of the bus.

A software tool called GTFSBuilder has been developed to visualize any GTFS data set and
convert it to a network representation (NETGTFS) consistent with Figure 3.1. In general, a NET-
GTFS file includes info, link, node, route, shape, stop and trip. Figure 4.1-(a) shows the CTA

stops, bus and metra lines active between 6 AM to 6 PM on weekdays, generated using GTFS-
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Builder.

We also note that the same route may run in different patterns during a day, for example, the
route may skip some stops during a period of a day. Since the schedule for different patterns of
the same route may vary very much, we group the trajectories stopping at the exactly same stops
into one pattern. Those trajectories in Figure 4.1-(b) actually correspond to a particular pattern

for the bus route 151. Consequently, each stop/pattern pair constructs a headway distribution.

Distance travelled (Miles)
S

|
| |/
/

. J | [ Lil f it il i . i .
06:00 10:10 11:33 12:56 14:20 15:43 17:06 18:30

w—ﬂ\ 7 Time of day

(a) Stops, bus lines and light rail lines to be used . X
in the case study (generated using GTFSBuilder) (b) All trajectories for Route pattern 151-0-101 on July 1st, 2011 beetween 6 AM and 6 PM

Blue dots are stops; Red dash line are light rail lines;
black solid line are bus lines;

Figure 4.1: lllustration of data sources for the case study

The second source is the automatic vehicle location (AVL) data that feeds CTA’s Bus Tracker
Program. The AVL data includes detailed transit vehicle space-time trajectories that can be used
to derive various transit performance metrics The time-space diagram in Figure 4.1-(b) visualize
such trajectories on CTA’s bus route 151 on July 1st, 2011 between 6 AM and 6 PM. The trajecto-
ries are from a one-month sample of the CTA’s bus AVL data. Note that from these trajectories the

headways at any given stop, the inter-stop travel times, and the dwell times around a stop can all
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be retrieved. Since the AVL data is not perfect, for example, some trajectories are incomplete, we
have developed some heuristics to extract the headway observations, which may result in some
invalid values, e.g., non-positive values. For the purpose of the distribution fitting, we simply
delete those invalid headway values. With many days of observations of the same trajectories,
probabilistic distributions may be constructed. Figure 4.1-(c) shows the headway distribution on

route 151 at the Stockton & Arlington stop based on the data in the July of 2011.

4.2 Transit data viewer

A Transit Data Viewer tool is developed to visualize the data. The tool is developed on
the VNET platform, which a simple, flexible and extensible graphic user interface to support a
wide variety of network-related applications, *. This section will focus on the data processing
and visualization functions provided by Transit Data Viewer. A detailed manual of VNET can
be found in Appendix B.

Transit Data Viewer can perform the following analysis based on a PostGres database that

currently stores all bus running data in the July of 2011.

Time-space trajectory Time-space trajectory plots the bus’s position against time for each sched-
uled bus trip. Both the scheduled and actual trajectories can be plotted and compared with
each other. The scheduled time data plots the scheduled time of the vehicle. The vertical

distance between lines reflects the headway of the bus.

Segment running time distribution Segment running time distribution plots the probability den-

sity function (PDF) and cumulative probability function (CDF) of a selected route segment.

Headway statistics Headway Statistics plot the PDF and CDF of the headway distribution at a
selected stop of a route. Spatial headway statistics plot the mean, variance and percentiles

of headway at a set of consecutive stops of a route.

1See http://translab.civil.northwestern.edu/nutrend/?page_id=53 for more details.
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On-time statistics On-time probability analysis focuses on the deviation between the scheduled
and actual arrival times. The PDF and CDF of such deviations can be plotted. A similar
spatial analysis as headway statistics can also be performed for a set of consecutive stops

of a route.

Dwvell time statistics Dwell time statistics plots CDF and PF of the dwell time at a stop, i.e. the
stopping time at a stop to board and alight. Similarly, a spatial analysis can be performed

for a set of consecutive stops of a route.

In what follows, two examples are provided for demonstration purpose. The first example is
route 130 from Museum Campus to Ogilvie Transportation Center. The second example is route

125 North from Harrison St. to Water Tower Place.
4.2.1 Example 1: Route 130 North

Route 130 North bound is chosen as our second example for demonstration purpose. Figure
4.2(a) is the route schedule from CTA’s website. Figure 4.2(b) is a screenshot from VNET, where
the dots represent transit stops while the green line is Route 130 North bound.

After loading the route, we select all the trips of July 1st. for demonstration purpose. Figure
4.3(a) shows the time-spatial trajectory of Route 130 North. From the plot, we can see that the
bus service is quite regular before 1PM. The lines are evenly distributed. However, irregularity
grows obviously as afternoon rush hour approaches. The first observable irregularity happens
at 3:45PM. The bus at 3:45PM is late from schedule, see Figure 4.3(b) which plots both the
actual and scheduled bus trajectory. The space between the bus and its predecessor becomes
wider. Unfortunately, the off-schedule is not adjusted accordingly afterwards. New buses are
dispatched off schedule. As a result, serious bunching is observed. When bunching happens,
two consecutive buses arrive close to each other. Another two bunchings are observed around
5PM, which might be result from the afternoon rush hour. In particular, the arterial streets of

downtown Chicago becomes congested and vehicles are not able to move smoothly.
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We also conduct analysis on the segment statistics. Figure 4.4(a) represents the overall seg-
ment statistics. The travel time PDF and the travel speed PDF is bell-shaped. However, Figure
4.4(b) provides an irregular segment statistics. There is no obvious trend for the PDF of travel
time. In addition, The PDF of travel speed is no longer centered but spread out. In fact, depend-
ing on the traffic condition, the segment statistics may vary between each other.

The next plot depicts the relationship between stop headway and stop distance from bus
terminal, see Figure 4.5. (To show the plot, sort the stops based on cumulative distance.) One
thing worth noting is the trend of the standard deviation (SD). In general, SD is expected to
increase as the bus moves from the terminal. An intuitive explanation is due to the intervention
of traffic disruption. As the bus moves downstream, the effect of traffic disruption accumulates
and results in increasing SD. However, in the plot, a decreasing trend is observed before 0.2 miles.
In particular, the decrease takes place on the first segment of the Route 130 North, see Figure 4.6.

Figure 4.7(a)- 4.7(c) plot the on-time probability distribution for three different stops along
the route, from upstream to downstream. The mean deviation for the upstream stop is 1.33 mins.
The mean deviation for the middle stop is 3.73 mins. The mean deviation for the downstream
stop is 7.64 mins. The mean deviation increases as the stops move towards downstream. In the
meanwhile, the overall trend of deviation can be plotted with Spatial on-time analysis tool, see
Figure 4.8. The mean deviation, as well as percentile deviation, are plotted against the distance
from the terminal. The same uphill trend is observed as the stops move towards the downstream.

Stop dwell time and spatial dwell time are plotted in Figure 4.9 and Figure 4.10, respectively.
No major trend is observed for spatial dwell time analysis. The dwell time at each individual
stop is more related to the demand (boarding/alighting passengers). The distance from terminal

has little impact on the dwell time.
4.2.2 Example 2: Route 125 North

Route 25 North bound is chosen as our second example. Figure 4.11(a) is the route schedule

from CTA’s website. Figure 4.11(b) is the screenshot from VNET, where the dots represent transit
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Figure 4.10: Spatial dwell time analysis for Route 130

stops while the green line is Route 125 North. It is noted that Route 125 is an express line which
operates in the morning and afternoon. There is no middle day service for route 125. Figure
4.12 clearly depicts the service for Route 125. The figure is draw based on operation data on July
5th. While bus bunchings are observed in the morning (e.g. time-spatial diagram overlaps), the
service is quite reliable in the afternoon.

Segment statistics are plotted in Figure 4.13. The mean travel time is 31.87 mins while the
mean speed is 5.69 mph. The overall performance of the route is reliable, i.e. the PDF of travel
time and speed are bell-shaped. However, some segments are irregular. Figure 4.14(a) (between
Canal & Harrisan and Canal & Van Buren) and Figure 4.14(b)(Between Michigan & Ontario and
Michigan & Huron) list two examples of irregular travel time and speed.

Figure 4.15 plots the bus stop headway over distance. In general, the route is quite reliable.
The mean headway remains around 11 mins. The SD increases slightly over distance from 5 to 7.

Figure 4.16(a) and 4.16(b) give two examples of on-time analysis at two stops, Ohio & State
and Canal & Harrison, respectively. It is observed that the distribution of Canal & Harrison
is more centralized compared to Ohio & State. The observation matches our intuitive in the

way that Ohio & State is Chicago downtown and thus bus headway is subject to more traffic
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Figure 4.13: Segment statistics for Route 125
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disruption in downtown. Spatial on-time analysis is provided in Figure 4.17. The mean deviation
from schedule varies largely depending on the specific location. An uphill trend of standard

deviation is also observed in the plot.
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Figure 4.16: Route 125 on-time analysis

Figure 4.18(a) and 4.18(b) provides two example of dwell time analysis at Canal & Adams and
Onhio $ State, respectively. The mean dwell time at Canal & Adams is 41.52 secs while it is only
7.88 secs at Ohio & State. Canal & Adams is close to the Union Station. Therefore, higher pas-

senger demand is expected which results in longer dwell time for passenger boarding/alighting.
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Chapter 5

Headway distribution fitting

In this chapter, we will fit the headway data obtained from Transit Data Viewer to various
distributions using the distribution fitting functions provided by @Risk. @Risk! is a commer-
cial software embedded into Microsoft Excel to analyze risk and uncertainty in a wide variety
of industries. Since there is no underlying physical basis implying which type of distribution
would suit for the bus headway distribution, we fit six commonly used distributions for positive
random variables, which are Exponential, Erlang, Gamma, Weibull, LogLogistic and LogNormal

distributions.
5.1 [Hlustration of the analysis

In this section, the Michigan & Cullerton stop on Route 1 is used to demonstrate how to
perform headway distribution fitting and interpret the results.

524 valid headway observations for the stop have been extracted from the trajectories be-
tween 6 AM to 6 PM in the July of 2011. The headway sample has a mean of 14.85 minutes
and a standard deviation of 6.17 minutes. Table 5.1 presents the statistic values of three popular
goodness-of-fit (GOF) tests as well as the parameters of the fitted distributions. The distribution
parameters are estimated using the maximum likelihood estimation (MLE) method. For each
GOF test, fitted distributions are ranked according to the statistic value where the smaller the

statistic value, the better the fit. Note that different GOF tests do not necessarily generate con-

1see http://www.palisade.com/risk/
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sistent results in terms of the rank. From the table, we see that Chi-Square test ranks Erlang as
the best fitted distribution, while both Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S)
tests rank LogLogistic as the best fitted distribution. It seems that there is no much difference
among Erlang, Gamma and LogLogistic in terms of the statistic value. But the Exponential distri-
bution has a much larger statistic value, which indicates it is not preferable compared with other
distributions. Also worth noting is that the fitted Exponential, Erlang and Gamma distributions
have the same mean value as the real data. In the real application that the mean of the headway
distribution is a key influencing factor of the outcome, Erlang or Gamma distributions may suit

better than the LogLogistic distribution.

Table 5.1: Statistic values of different GOF tests
Distribution| Chi-Sq A-D K-S Parameters

Erlang| 22.2939 1.4573 0.0451| Mean=14.85, Std. Dev.=6.06
Gamma| 23.4351 1.8291 0.0465| Mean=14.85, Std. Dev.=6.18
LogLogistic| 24.0496 0.9336 0.0269| Mean=15.24, Std. Dev.=7.34
LogNormal | 43.8893 4.3047 0.0727| Mean=15.02, Std. Dev.=7.07
Weibull| 54.5115 5.5060 0.0794| Mean=14.83, Std. Dev.=6.36
Exponential |564.1985 91.0035 0.3308| Mean=14.85, Std. Dev.=14.85

Comparing the summary statistic values given by GOF tests is one way to justify the fitted
distributions, the graphical tools provided by @Risk are also helpful for visually evaluating the
fit. Figure 5.1 shows the histogram of the original headway data versus the probability den-
sity function for different fitted distributions. We can see clearly that the first four distributions
according to the Chi-Sq rank fit generally well, while Weibull distribution is lack of fit in the mid-
dle range of the headway value and Exponential distribution fits extremely bad in this particular
case. To see where the lack of fit occurs, we can use the quantile-quantile (Q-Q) plot which is
shown in Figure 5.1. If the fit is perfect, the curve should be very close to an approximate 45
degree line. Deviation from the line indicates not only the lack of fit, but also where it occurs.
From the Q-Q plots, Erlang and Gamma distributions seem to fit better than LogLogistic and
LogNormal distributions which are lack of fit in the right tail. The plot for Weibull distribution

deviates from the 45 degree line in the middle. Exponential distribution still fits very bad.
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Figure 5.1: Fit comparison for different fitted headway distributions
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Now we need to fit the headway distributions for the whole CTA network, which consists
of more than 10,000 stop/pattern pairs, it is not realistic to visually investigate each headway
distribution individually. What we can do is automating the fitting process and obtaining the
statistic values for different GOF tests, then ranking the fitted distributions accordingly. Thanks
to the Excel Object Library included in @Risk, we have written a VBA program to automate
the fitting process. The parameters for different fitted distributions could also be obtained for
further use in executing the hyperpath algorithm. Our initial analysis suggests that a finer
time resolution is needed for better routing support and more accurate performance evaluation,
because CTA’s bus schedules change significantly during a day. In light of this, the proposed
case study will create and test the scenario in weekday morning peak hours, namely between

6:00 AM to 10:00 AM.

5.2 Headway distributions for the weekday morning peak period

We now perform a large-scale fitting using all the headway data retrieved from the trips
between 6 AM and 10 AM on weekdays in the July of 2011. This data set will be used to perform
the case study for transit routing in the next section.

The processed GTFS network has 125 routes, 1,577 patterns and 11,179 stops. Each pattern
consists of a number of stops in a route. Thus, for each stop in a pattern, we have a headway
distribution to fit. In total, we have 15,081 headway distributions, i.e., 15,081 pattern/stop pairs,
to fit. In the following two subsections, we first present the summary statistics of the headway

data, then report the distribution fitting results.
5.2.1 Statistics of headway data

The number of observations for each headway distribution ranges from 113 to 634 depending
on how many trajectories we have for the corresponding pattern. The sample size histogram
is shown in Figure 5.3(a). The sample size for all headways is larger than 100, which is ade-

quate to qualify for the distribution fitting. Figure 5.3(b) shows the histogram of the headway
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mean for all pattern/stop pairs. It shows that 11,606 out of 15,081 headway distributions (about
77.0%) have a mean headway between 10 and 20 minutes. No headway distribution have a mean
headway greater than 30 minutes in weekday morning peak. The average value of the headway
mean is about 13.9 minutes. The histogram of the headway standard deviation for all headway
distributions is shown in Figure 5.3(c). We see that the majority of headway distributions have a
standard deviation less than 10 minutes. The average headway standard deviation is about 5.1
minutes. To better demonstrate the variability of the headway distribution, we plot the coefficient
of variation histogram in Figure 5.3(d), where the coefficient of variation is defined as the ratio
of the standard deviation to the mean. Most of headway distributions’ coefficient of variation
is less than 0.6. The average value is about 0.38. Note that the coefficient of variation is 0 for
deterministic distribution, and 1 for exponential distribution. The value of coefficient of variation
suggests that the assumption that bus headway follows exponential distribution in most previous

literature seems not valid in reality.

5.2.2 Distribution fitting results

Table 5.2 shows the number of best fits for different fitted distributions according to three
GOF tests. For example, Erlang distribution is ranked best (has the smallest statistic value) by
Chi-Sq test in 1,561 out of 15,081 cases. The number of failed fits for those distributions is
also reported. Failure of fitting the distribution means the MLE method cannot converge to get
the parameters of the fitting distribution for some reason, for example, Erlang distribution fails
to fit the data in 6 out of 15,081 cases. From the results of Table 5.2, LogLogistic distribution
seems to fit best in general among the six distributions. However, having the smallest statistic
value is not equivalent to that the distribution is the best fit in all aspects. Remember that in
the example we show before, the LogLogistic distribution has the smallest statistic value for
both A-D and K-S tests, but the Q-Q plot shows that Erlang and Gamma distributions fit better.

Besides, the statistic value of Erlang or Gamma distribution may be only slightly larger than that
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Figure 5.3: Summary statistics of headway observations in weekday morning peak
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of LogLogistic distribution. In order to see how much the other fitted distributions deviate from
the best fitted one, we calculate the percentage deviation of the statistic value from best (i.e., the
smallest statistic value) for all six distributions and for each fit. The average percentage deviation
across all successful fits are reported in Table 5.3. From this perspective, LogLogistic is still the
best fit overall. Erlang and Gamma are the second best fits. Also worth emphasizing is that
fitted Exponential, Erlang and Gamma distributions have the same mean headway as the real
data. The fact that Gamma actually includes Erlang and Exponential distributions suggests that
we should prefer Gamma to Erlang and Exponential. The reason we may be in favor of Erlang
distribution is that it provides more flexibility than Exponential distribution (commonly used in
most previous literature) and is more computationally tractable than Gamma distribution as we

will see later.

Table 5.2: Number of best fits for various distributions
Distributon |Chi-Sq A-D  K-S|Number Of Failed Fits

Erlang| 1561 605 503 6
Gamma| 1350 545 466 6
LogLogistic| 6807 9193 10394 215

LogNormal| 1355 529 513
Weibull| 4007 4209 3205
Exponential 1 0 20

o o o

Table 5.3: Average percentage deviation of the statistic value from best

Distribution|Chi-Sq (%) A-D (%) K-S (%)
Weibull 122.63 399.94  77.86
Gamma 53.15 143.4 52.22
Erlang 54.17 149.85  53.08
Expon 1353.42 448154 496.82

LogL ogistic 325 46.3 7.19

LogNormal 104.2 281.26 77.4

5.3 Summary

Both the summary statistics of the headway observations and headway distribution fitting

results show that headway distribution is unlikely to be exponential in reality. The LogLogistic
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distribution is the best fitted distribution in general for CTA’s bus headway, followed by Erlang
and Gamma distributions. Some other aspects also need to be considered when choosing the
headway distribution type for the real application. For instance, fitted Gamma and Erlang dis-
tributions have the same mean as the real data. Besides, computational tractability is another
important factor, especially for the large-size problem. Erlang distribution has a significant ad-
vantage over Gamma and LogLogistic distributions in terms of computational efficiency, because
the waiting time distribution can be computed in closed-form when the headeay follows Erlang
headway (see Section 3.2). Taking all of these into account, Erlang is an overall good choice for
our large-scale case study, which balances between the accurate representation of the headway

distributions and the reasonable computational efforts.

CCITT 46



Chapter 6

Numerical experiments

6.1 Impacts of service regularity on route choice

In most previous studies, the transit headway distribution is assumed to be exponentially
distributed, which implies highly irregular transit service. However, as the CTA headway data
revealed, this is hardly the case in the real world. To illustrate the impact of the service regularity
on the route choice, we first analyze a small example with two lines, whose attributes are shown
in Table 6.1. The two lines are assumed to have Erlang headway distributions. For simplicity,
both lines have the same Erlang shape parameter k, i.e., the standard deviation of the headway
distribution is E[h]/\/E. So as k increases, the standard deviation decreases, which means the
service is more regular. Note that the Erlang distribution with shape parameter k = 1 is equiva-
lent to the exponential distribution with the same mean, and the Erlang distribution with shape
parameter k = +o0 is equivalent to the deterministic distribution.

The results of the route choice probability and expected travel time for different levels of
service regularity are reported in Table 6.2. Some interesting trends can be observed from the
results. First, as k increases, i.e., the service becomes more regular, the expected travel time keeps
going down to the lower bound which corresponds to the deterministic headway distribution.
Second, the probability of choosing the first line, i.e., the faster line, at first decreases as k in-
creases, and then jumps to 1 as k reaches to a breakpoint, which means the second line, i.e., the

slower line, is excluded from the attractive set. An explanation is that the passengers can take ad-
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vantage of the higher frequency of the slower line when the service is not regular enough. When
the service becomes very regular, the passengers will stick to the faster line since the decreased

line travel time in this example outweighs the increased waiting time of doing so.

Table 6.1: Attributes of two transit lines
Line i|Headway Mean E[h;] (min) Travel Time s; (min)
1 20 20
2 10 30

Table 6.2: Route choice results for various service regularity levels
k| m m |[E[W] E[S] E[T]
110.333 0.667| 6.67 26.66 33.33
2 10.315 0.685| 5.37 26.85 32.22
30.303 0.697| 4.96 26.97 31.93
4 10.295 0.705| 4.76 27.05 31.81
101 1 0 |11.00 20.00 31.00
50| 1 0 |10.20 20.00 30.20
| 1 0 |10.00 20.00 30.00

6.2 Determination of the attractive set

It is well known that for the exponential headway, the attractive set could be determined
using a greedy method, which ranks all the available lines in the increasing order of the line
travel time and successively adds the line into the attractive set until the line travel time of the
next line exceeds the current expected travel time (Nguyen 1989). However, this greedy method
may not produce the right attractive set for other headway distributions, see Gentile et al. (2005)
for example. Gentile et al. (2005) also proposed another greedy method which rearranges the
order of the lines according to the expected travel time of the line considered separately and stop
as soon as the addition of the next line increases the expected travel time. Gentile et al. (2005)
reported that they were neither able to prove that thee correctness of the proposed strategy, nor
able to find a counterexample. In this following, we will show this strategy does not gaurante

the correct identification of the attractive set, using a counterexample.
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Consider the example given in Table 6.3, the headway distributions are assumed to be ex-
ponential for all lines. The route choice probability and expected travel time of all possible
combinations of the three lines are reported in Table 6.4. From the results, we can see that the
line order should be {1, 3, 2} according to the expected travel time of each line. Consequently,
the resulting attractive set by executing the greedy method is {1, 2, 3}, while the right attractive

setis {1, 2}.

Table 6.3: Line Attributes

Line i | Headway Mean E[h;] (min) Travel Time s; (min)
1 20 30
2 15 40
3 10 44.8

Table 6.4: Numerical results for various combinations of lines
Line Set| ;1 ) s | EW ER ET

1 1 0 0 |20.00 30.00 50.00
2 0 1 0 |15.00 40.00 55.00
3 0 0 1 |10.00 44.80 54.80

12 10429 0571 0 | 857 3572 44.29
13 (0333 0 0.667| 6.67 39.86 46.53
23 0 0.400 0.600| 6.00 42.88 48.88
123 ]0.231 0.308 0.461| 4.62 39.90 44.52

Therefore, we conclude that no greedy method is exact in the case of general headway dis-
tribution. For exponentially distributed headway, the original greedy method (based on ranking
line travel time) can ensure the right attractive set. For all other headway distributions, either
greedy method may be used as an approximation method. We note also that the enumeration

method may be considered as an alternative when the number of lines is small.

6.3 Simulation results of route choice

As discussed before, the waiting time distribution for a specific line is an asymptotical dis-
tribution when the bus operating time approaches infinity. Therefore, the resulting route choice

probability is only valid at the steady state. In this section, we use a discrete event simulation to

CCITT 49



Chapter 6. Numerical experiments Nie et al.

verify the analytical results at the steady state. The simulation is implemented in Microsoft Excel
using VBA, see the interface in Figure 6.1. The user can specify the running length, the number
of replications, the number of transit lines at the stop as well as the attributes of each line, e.g.,
headway mean and headway standard deviation. The results of the route choice probability and
the trip performance measures will show automatically in the results region after the simulation
is completed. A 95% confidence interval of each measure is also calculated as well as the relative
error, which is the half width of the confidence interval divided by the midpoint of the confidence

interval.

Transit Route Choice Simulation

Run

Num of Lines:

3

Run Length (min):

10000

Num of Replications:

100

Line

Parameters

Results

Headway Mean

Headway Var

Line Travel Time

Distribution Type

Info. Aval.

Probability

Conf. Interval Rel. Error

1
2
3

44.44444444
25
11.11111111

Erlang
Erlang
Erlang

No
No
No

0.203473144
0.291439529
0.505087327

0.000515405  0.002533
0.000210117  0.000721
0.000409274  0.0008103

Figure 6.1: Interface of the route choice simulation

In the simulation, each line is dispatched according to the headway distribution specified by
the user. Passengers’ arrival at the stop is modeled as a Possion arrival. The passengers will
board the first coming line. The probability of boarding each line is calculated as the number of
passengers who board that line divided by the total number of passengers arriving at the stop.
We set the running length to be 100,000 minutes in each replication (unless otherwise specified)
to estimate the route choice probability at the steady state. The number of replications is set as
100 to ensure that the relative error is less than 5%. Note that the passengers do not calculate the
attractive set in the simulation, they simply board the first coming line. In order to compare the
simulation results with the analytical results, we choose a three-line example in which all of the
three line are included in the attractive set. The line attributes are shown in Table 6.5.

Table 6.6 and Table 6.7 report both simulation results and analytical results for the Exponential

headway case and Erlang headway case, respectively. For Erlang headway case, all three lines
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Table 6.5: Line attributes

Line i|Headway Mean (min) Travel Time (min)
1 20 10
2 15 15
3 10 16

are assumed to have the same shape parameter k = 9, which means the standard deviation is one
third of the headway mean. The 95% confidence interval is also reported. The relative difference
is the percentage difference of the analytical result from the simulation result. The results show
that the analytical probabilities at the steady state are very accurate for both the Exponential
headway case and the Erlang headway case. The results for the Deterministic headway case are
presented in Table 6.8. The relative differences are much larger than those of the Exponential and
Erlang headway cases. Since the headway is deterministic, with the headway values in Table 6.5,
multiple lines may arrive at the stop at the same time, e.g., both line 1 and line 3 will arrive at
the stop at time t = 20 minutes. If there are more than one line arriving at the stop at the same
time, the waiting passengers will be evenly allocated to the arriving lines. If we change line 1’s
headway mean to 20.01 or 19.99 minutes, then line 1 and line 3 will rarely arrive at the same time
within the 100,000 minutes interval. We also report the results for these two cases in Table 6.9
(line 1’ headway = 20.01 minutes, case 2) and Table 6.9 (line 1’ headway = 19.99 minutes, case 3),
respectively. Two surprising facts are worth pointing here: (1) The results change dramatically
from case 1 for both case 2 and case 3, and they are closer to the analytical results; (2) Case 2 and

case 3 have very close results.

Table 6.6: The Exponential headway case

Simulation Result Analytic Result|Relative Difference (%)
Line 1 Probability 0.2314+0.001 0.231 0
Line 2 Probability 0.308+0.001 0.308 0
Line 3 Probability 0.461+0.001 0.461 0
Expected Waiting Time 4.61+0.01 4.62 0.2
Expected Trip Time 18.92+0.01 18.92 0

Regarding the first fact, the reason why the analytical formula is not accurate for case 1 is
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Table 6.7: The Erlang headway case

Simulation Result Analytic Result|Relative Difference (%)
Line 1 Probability 0.2034-0.001 0.203 0
Line 2 Probability 0.290+-0.001 0.290 0
Line 3 Probability 0.507+0.001 0.507 0
Expected Waiting Time 3.434+0.01 3.43 0
Expected Trip Time 17.924+0.01 17.92 0

that it does not consider the situation in which multiple lines arrive at the stop at the same.
Simply speaking, the assumptions behind the analytical formula do not state which line to board
if multiple arrivals at the same time occurs. In our simulation, we assume that each line will get
the equal share of the waiting passengers. However, the best strategy for passengers should be
boarding the line with the minimum line travel time among those arriving lines. If we enforce this
rule in the simulation, we can expect that the resulting route choice probability will be different
for case 1. Another interesting point regarding the first fact is that the expected waiting time in
case 1 is much larger than that in both case 2 and case 3. This is not hard to understand. Since in
both case 2 and case 3, line 1 and line 3 rarely arrives at the same time, the probability of having
at least one line arrival at a given period increases. Consequently, passengers’ expected waiting

time decreases.

Table 6.8: The Deterministic headway case 1

Simulation Result Analytic Result|Relative Difference (%)
Line 1 Probability 0.180+0.001 0.194 7.8
Line 2 Probability 0.306+-0.001 0.278 -9.1
Line 3 Probability 0.514+0.001 0.528 2.7
Expected Waiting Time 4.17+0.01 3.33 -20.1
Expected Trip Time 18.78+0.01 17.89 -4.7

The second fact that case 2 and case 3 have almost the same results seems counter-intuitive at
first glance. For case 2, because of the 20.01 minutes headway, a line 1 will arrive a little bit later
than a line 3 at first, so the line 1 will get very few passengers since most waiting passengers
already board line 3. Thus, we should expect the probability of boarding line 1 decreases in case 2

and increases in case 3, compared with case 1. But if the running length is long enough, this effect

CCITT 52



Chapter 6. Numerical experiments Nie et al.

Table 6.9: The Deterministic headway case 2

Simulation Result Analytic Result|Relative Difference (%)
Line 1 Probability 0.209+4-0.001 0.194 -7.2
Line 2 Probability 0.27140.001 0.278 2.6
Line 3 Probability 0.520+-0.001 0.528 1.5
Expected Waiting Time 3.54+0.01 3.33 -5.9
Expected Trip Time 18.02+0.01 17.89 -0.7

Table 6.10: The Deterministic headway case 3

Simulation Result Analytic Result|Relative Difference (%)
Line 1 Probability 0.208+0.001 0.194 -6.7
Line 2 Probability 0.271+0.001 0.278 2.6
Line 3 Probability 0.521+0.001 0.528 13
Expected Waiting Time 3.54+0.01 3.33 -5.9
Expected Trip Time 18.02+0.01 17.89 -0.7

may be eliminated as the inter arrival time between a line 1 and a line 2 changes periodically.
To confirm this, we report the results for both case 2 and case 3 with different running length in
Table 6.11 and Table 6.12. As we can see, with running length 10,000 minutes, the probability of
taking line 1 in case 2 is smaller than that in case 3. As the running length increases to 100,000
minutes, the probability of taking line 1 is almost the same in both case 2 and case 3.

Even though the simulation results in both case 2 and case 3 are closer to the analytical
results compared with case 1, the relative difference is still larger if compared with the Expon
or Erlang distribution case. Also noticing that the simulated expected trip time for deterministic
distribution is a little larger than that for the Erlang distribution. It indicates that the deterministic
headway dispatching does not necessarily guarantee the minimum expected trip time if the
headways for each line are badly chosen.

Table 6.11: The Deterministic headway case 2 with different running length
Running Length (mins)| 10,000 100,000 1,000,000

Line 1 Probability
Line 2 Probability
Line 3 Probability

0.125+0.001 0.209+0.001 0.2079+0.0001
0.271+0.001 0.271+0.001 0.2711+0.0001
0.604+0.001 0.520+0.001 0.5210+0.0001

Expected Waiting Time
Expected Trip Time

3.54+0.01 3.54+0.01  3.542+0.001
18.52+0.01 18.02+0.01 18.023+0.001
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Table 6.12: The Deterministic headway case 3 with different running lengthn

Running Length (mins) 10,000 100,000 1,000,000

Line 1 Probability
Line 2 Probability

Line 3 Probability

0.291+0.001 0.208+0.001 0.2088+0.0001
0.270+0.001 0.271+0.001 0.2707+0.0001
0.439+0.001 0.521+0.001 0.5205+0.0002

Expected Waiting Time | 3.54+0.01  3.54+0.01  3.542+0.001

Expected Trip Time

17.53+0.01 18.02+0.01 18.018+0.001

6.4 An lllustrative hyperpath routing example

In this section, we present a small hypothetic network to illustrate the impact of different

headway assumptions on the resulting optimal hyperpaths. The example transit network consists

Figure 6.2: A three-stop transit network

of three transit lines which go through the three same
stops, namely A, B, and C, but with different attributes
on line headway and line travel time. The network topol-
ogy of the small example, represented by the NETGTFS
format, is shown in Figure 6.2, in which the squares rep-
resent the transfer stop nodes A, B, and C; the circles rep-
resent the transit nodes; the triangles represent the dwell
nodes. The line attributes are shown in Table 6.13. To
compare the impacts of different headway assumptions,
we test the Exponential headway and Erlang headway on
this small network. For simplicity, the shape parameter
of Erlang headway distribution for all line-stops is set as
9. This implies that the coefficient of variation for Erlang
headway distribution is about 0.333, which is very realis-
tic according to our analysis in the previous section. In

the test, stop C is the destination, passengers can travel

from both stop A and stop B to the destination.
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Not to our surprise, our tests generate different shortest hyperpaths for the Exponential and
Erlang headway distributions. The results are shown in Figure 6.4. At stop B, the expected
total travel time for Exponential headway distribution is 34.67 minutes compared with 31.64
minutes for Erlang headway distribution. Also notice that the shortest hyperpath for Exponential
headway distribution includes all three lines while it only includes line 2 and line 3 for Erlang
headway distribution. This is because the expected total travel time of the set of line 2 and line
3 decreases significantly as the headway variance decreases, thus, it is not advantageous to take
the line 3 with a much longer line travel time. The intuition here is that since the headway is
more regular, the shortest hyperpath may exclude the line with longer travel time. At stop A,
the expected total travel time for Exponential headway distribution is 68.57 minutes compared
with 64.82 minutes for Erlang headway distribution. Passengers may board either line 1 or
line 2, whichever comes first, for both Exponential headway distribution and Erlang headway
distribution. The interesting thing is that with Erlang headway distribution, if passengers board
line 1 at stop A, they will get off line 1 at stop B and wait for either line 2 or line 3, whichever
comes first. This strategy will yield a smaller expected travel time.

The numerical results with the small network indicate that under different headway assump-
tions, we could predict quite different shortest hyperpaths, thus quite different assignment results
if we implement the transit assignment algorithm. As the network size increases, the difference
may be much more significant. In the next section, we will conduct a few tests on the CTA

network with the real operation data.

Table 6.13: Line attributes of the hypothetic network

Headway Mean Travel Time Headway Mean Travel Time

Line i at Stop A From Ato B at Stop B FromBto C
1 10 30 20 34
2 25 30 30 25
3 10 50 15 25
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Figure 6.3: Shortest hyperpath under different headway assumptions
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Case study of the CTA bus network

In this section, we conduct experiments on the CTA bus network with the real operation data
to examine the performance of the CTA bus service under different bus headway assumptions,
i.e., Exponential and Erlang. Both Exponential and Erlang headway distributions are calibrated
from the real headway observations. The bus travel time from one stop to another is constant,
which is the average of the real travel time observations. Note that we exclude the train and

metra routes from the network because we do not have the operation data of those two modes.
7.1 Hlustrative example

We use one O-D pair to illustrate that different bus headway assumptions may result in very
different strategies of choosing attractive bus routes. In this case, the origin is Ashland and
Irving Park, the destination is Michigan and Grand. The headway observations used to fit the
distributions are collected between 6:00 AM and 10:00 PM across the July of 2011. The shortest
hyperpaths from Ashland and Irving Park to Michigan and Grand for both headway assumptions
are shown in Figure 7.1. As we can see, the shortest hyperpath for Erlang headway distribution
happens to be a simple path in this case while the shortest hyperpath for Exponential headway
distribution is much more complicated. It indicates that some bus routes are excluded from the
attractive set when headways are considered as following Erlang distribution, which is consistent

with our analysis for the small three-stop example. More details of these two hyperpaths are
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reported in Table 7.1. The expected total trip time for Erlang case is -15.03% less than that for
Exponential case. The enroute time is actually longer for Erlang case. The waiting time for
Erlang case is slightly larger because in this instance the passengers have only one bus to wait at
each stop for Erlang case. The increased waiting time for Erlang case is more than offset by the
significantly decreased walking time. The results in this example suggest that Erlang headway
distribution can generate better overall performance than Exponential headway distribution.

4
1
o 1
L]
% {
[ ]
[ B -l
(a) Exponential headway distribution case (b) Erlang headway distribution case

Figure 7.1 Shortest hyperpaths from Ashland and Irving Park to Michigan and Grand

7.2 Average performance in morning peak

In this section, we investigate the average performance of the CTA bus network in the morn-

ing peak hours, i.e., between 6:00 AM and 10:00 AM. For this purpose, four representative zones
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Table 7.1: Trip performance from Ashland and Irving Park to Michigan and Grand

Expected Performance |Exponential Case Erlang Case Difference (%)
Total TripTime (min) 43.50 36.96 -15.03
EnRouteTime (min) 18.32 22.22 21.29
WaitingTime (min) 11.24 12.93 15.04
WalkingTime (min) 13.49 1.41 -89.55
TransferLostTime (min) 0.45 0.40 -11.11
Total TripDistance (mile) 6.42 5.83 -9.19
AverageSpeed (mph) 8.85 9.46 6.89

are selected in the greater Chicago area, namely Downtown Chicago, North suburbs, South Sub-
urbs and West Suburbs, as shown in Figure 7.2. In each zone, ten random places are selected as
the origins or destinations. Four scenarios are tested for both Exponential and Erlang headway
distributions, which are North Suburbs to Downtown Chicago, South Suburbs to Downtown
Chicago, West Suburbs to Downtown Chicago and Downtown Chicago to Downtown Chicago.
In each scenario, passengers travel from all the origins to all the destinations. Therefore, there
are in total 90 trips in Downtown Chicago to Downtown Chicago scenario, and 100 trips for each
of the three other scenarios. The average performance of all four scenarios for both headway
distribution are reported in Table 7.2-7.5. Note that all performance measures are the averages
of expected values across all trips in each scenario. For Erlang headway distribution, the greedy
method based on the line travel time is used to generate the attractive set.

From Table 7.5 in Downtown Chicago to Downtown Chicago scenario, the total trip time for
Erlang case is only slightly shorter than that for Exponential case. The walking time is more than
twice as much as the enroute time. The waiting time at a stop is very low compared with the other
scenarios. The average speed is comparable with the walking speed due to short enroute time.
For the three other scenarios, the Erlang headway distribution yields better overall performance.
The enroute time for both distributions cases are approximately the same while the Erlang case
has much shorter waiting and walking time. The average speed seems to be increasing with the

trip distance because there will be more enroute time involved in the trip.
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Figure 7.2: Four representative zones in the greater Chicago area
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Table 7.2: Average performance in North Suburbs to Downtown Chicago scenario

Avg. Expected Performance

Exponential Case Erlang Case Difference (%)

Total TripTime (min)
EnRouteTime (min)
WaitingTime (min)
WalkingTime (min)
TransferLostTime (min)
TotalTripDistance (mile)
AverageSpeed (mph)

66.32
38.20
13.28
14.39
0.45
9.28
8.38

60.86
40.09
10.89

9.43
0.45
9.19
8.98

-8.23
4.95
-18.00
-34.47
0.00
-0.97
7.16

Table 7.3: Average performance in South Suburbs to Downtown Chicago scenario

Avg. Expected Performance

Exponential Case Erlang Case Difference (%)

Total TripTime (min)
EnRouteTime (min)
WaitingTime (min)
WalkingTime (min)
TransferLostTime (min)
Total TripDistance (mile)
AverageSpeed (mph)

38.65
22.37
7.43
8.58
0.27
4.78
7.45

36.42
22.58

6.33
7.23
0.28
481
7.93

-5.77
0.94
-14.80
-15.73
3.70
0.63
6.44

Table 7.4: Average performance in West Suburbs to Downtown Chicago scenario

Avg. Expected Performance

Exponential Case Erlang Case Difference (%)

Total TripTime (min)
EnRouteTime (min)
WaitingTime (min)
WalkingTime (min)
TransferLostTime (min)
Total TripDistance (mile)
AverageSpeed (mph)

43.79
25.98
8.48
9.06
0.27
4.28
5.83

40.20

26.39
6.76
6.76
0.29
4.30
6.38

-8.20
1.58
-20.28
-25.39
7.41
0.47
9.43

Table 7.5: Average performance in Downtown Chicago to Downtown Chicago scenario

Avg. Expected Performance

Exponential Case Erlang Case Difference (%)

Total TripTime (min) 16.80 16.51 -1.73
EnRouteTime (min) 4.28 4.76 11.21
WaitingTime (min) 1.45 1.59 9.66
WalkingTime (min) 10.95 10.03 -8.40
TransferLostTime (min) 0.12 0.13 8.33
TotalTripDistance (mile) 1.04 1.05 0.96
AverageSpeed (mph) 3.63 3.72 2.48
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7.3 Algorithm comparison

7.3.1 Results by two greedy methods

We have discussed before two greedy methods for generating the attractive set if the headway
distribution is not exponential. In this section, we test these two greedy methods for Erlang
headway distribution in the aforementioned four scenarios. Hereafter, we denote the greedy
method based on ranking the line travel time as Greedy 1, the other greedy method based on
ranking the expected travel time of the line considered separately as Greedy 2. After running
the four scenarios using both greedy methods, we find that the two greedy methods generate the
same results. It implies that neither greedy method is superior to the other one in terms of the

results accuracy, at least in this case study.
7.3.2 Efficiency

In this section, we solve the four scenarios using two different algorithms—-Ilabel correcting
and label setting algorithms. In each scenario, we need to solve 10 all-to-one shortest hyperpath
problems. We will report the average time to solve a single all-to-one shortest hyperpath problem
in the entire CTA network for different algorithms and parameter settings. All the instances are
tested on a laptop with Window 7 Home Premium, Intel(R) Core(TM) i7-2630QM CPU@2.00GHz
and 8.00 GB memory. The results for Exponential and Erlang headway distribution are shown
in Table 7.6 and Table 7.7, respectively. Note that for Exponential headway distribution, we
use only Greedy 1 method since it guarantees the optimal attractive set, for Erlang headway
distribution, we report the results for both greedy methods. The computational results suggest
that label setting algorithm is much faster than the label correcting algorithm. And Greedy 2
method consumes more CPU time than Greedy 1 method, which is expected since it will spend
extra time to compute the expected travel time for each line separately.

Table 7.6: Computation time for Exponential headway distribution

Label Correcting Label Setting
Average CPU Time (s) 3 <0.2
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Table 7.7: Computation time for Erlang headway distribution
Label Correcting Label Setting
Greedy 1 Greedy 2|Greedy 1 Greedy 2
Average CPU Time (s) 300 370 9 11
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Appendix A

Derivation of the relationship between
waiting time and headway distributions

Rosenberg (1968) establishes the relationship between waiting time distribution F(-) and
headway distribution G(-) by analyzing the underlying discrete event of bus arrival. Let A;(t, x)
denote the event that at least one bus from route i arrives between the interval [t, t + X|, where
t is the passenger arrival time at the stop and x is the waiting time. Then the waiting time
distribution can be expressed as

F(t,x) = P{w(t) < x} = P{LNJ Ai(t,x)} (A1)
i=1

where w(t) is the waiting time when passenger arrives at time t. The second equality follows
from the equivalence of w(t) < x and at least one bus arrives between the interval [t,t + x|. By

assuming independence of each route, waiting time distribution is derived as

N

Fit.x) =1-T] (1 —P{Ai(t,x)}) (A.2)

i—1

In particular, the waiting time distribution on a specific route r is
Fr(t,x) = P{w(t) < x} = P{A((t,x)} (A3)

The computation of P{A;(t, x) } is given in the following equation. Readers are referred to Rosen-

berg (1968) or Také&cs (1982) for detailed computation. The result is presented as
t+x
P{AI(t, X)) :/t [1— Gi(t+x — u)]dM;(u) (A4)
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where Gj(x) is the CDF of headway, M;(u) is the average number of arrivals of a bus from route
i in the interval (0,u], which is called renewal function in renewal process. Computation of
equation (A.4) involves integration of a CDF. Analytical form can be obtained only for special
cases such as exponential distribution. Fortunately, numerical integration is always available to
calculate such integration.

Another difficulty of computing equation (A.4) lies on computation of renewal function
M;i(u). For convenience, we suppress the subscript i and use M(t) to refer to renewal function.
There are extensive studies on renewal process, see Ross (2009), Ross (1996),Tijms & Wiley (2003)
and Cox et al. (1962). Some important concepts and results of renewal process are presented

below for references.

Definition A.1 (Renewal Process) If the sequence of nonnegative random variables {X;, Xz,...} is
independent and identically distributed, then the counting process {N(t),t > 0} is said to be a renewal

process.

Definition A.2 (Renewal Function) The average number of events up to time t:
M(t) = E[N(t)] = X, FV (1)

where F("(t) is the n-fold Stieltjes convolution, which can be calculated recursively, defined as
F(t) = /OtF(”l)(t— u)dF(u) (A5)

In general, calculation of renewal function is not easy. Both numerical approach and approx-
imation approach have been developed to study the behavior of renewal function. In the special
case of asymptotic behavior where t — oo, renewal function can be easily calculated. There are

established theorems to calculate renewal function.

Theorem A.1 (Blackwell’s Theorem) Let p be the mean interarrival time. If the underlying interar-

rival distribution F is not lattice, then:

lim (M(t+h) — M(1)) :2 (A6)
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Theorem A.2 Let u and o2 be the mean and variance of interarrival distribution. Then for large t,

t 2 1
M(O) =+ ;_;42 > +0(1) (A7)

Therefore, in the asymptotic case, applying the above theorems leads to the calculation of

dM(t), the derivative of renewal function.

1
dM(t) = d— = ~d A8
(t) ot (A8)

Plugging equation (A.8) into equation (A.4) and (A.3) gives the CDF of waiting time distribu-

tion on route r.

1 [tx

Fe(t,x) = ) [1—G(t+x—u)|du
= 2 Pa- ey
Hr Jx
= [ -cylay (A9)

With the above CDF of waiting time distribution, we can easily obtain the PDF as follows.

dF(t,x)
dx

_ 126 A0
m (A.10)

fr(t,x) =

where G¢(x) is the CDF of headway distribution for route r. From the equations (A.9) and (A.10),
the waiting time distribution for route r is independent of the passenger arrival time t when t is

large.
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VNET Manual

B.1 Installation

VNET can be downloaded at http://translab.civil.northwestern.edu/nutrend/?page id=53.
The setup package is a .msi file. Simply double click it to launch the setup wizard which will
guide you through the installation process. Note that if an older version of VNET exist, it has
to be removed before installing a new version. Currently VNET can only be used on Microsoft

Windows XP and Windows 7.
B.2 A Quick Tutorial

VNET is very easy to navigate because it has a linear structure. All operations are structured

and executed following a well-defined path, as described below.
Step 1. Specify a network type — choose one from the dropdown list.

Step 2: Choose a base file from the set of required files for the selected network type (any file

can be used) by clicking il
Step 3: Load and navigate network by clicking R .

Step 4: Choose an app — choose one from the dropdown list, which will be built according to

network type.

Step 5: Run the app - click R :
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Step 6: Choose a post-run operation for analysis — choose from the dropdown list, which will

be build according to app.

Step 7:  Run the post — run operation. Click O

At any point, users may re-select an app or a file name - reselecting a file name necessitates a

network re-loading, and reselecting an app necessitates a new app run.
B.3 Getting Started

Once VENT is installed, a VNET shortcut can be found on the desktop. Or it is always accessi-
ble through the installation folder. The default folder is ”C:\Program Files (x86)\NUTREND\VNET".
User interface of VNET is shown in Figure B.1. The user interface consists of four major

panels as follows:

Main panel: display the map or plots generated in VNET
Network panel: select network from files
Application panel: network-related applications and post operations

Log panel: display information in running

e provide help information about VNET. The button pops out the help window of VNET,
Figure B.2.
. 4 switch between map view and plot view
Q provide coordinates information of the cursor
pop out a dedicated log window
4 clean the current log window

&l exit VNET
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B.4

Main

Network

Log

Applications— |

WS 8 occrsry lsoed WPAS by Mares e
VTR 81 Susttatshiy bt st el oty fachage by Uircs Hha

.......

Figure B.1: User interface of VNET

Network Panel

B.4.1 Select network type

Before loading network files, network type has to be specified. Eight network types are

available from the drop list for the current version. A more detailed description about each type

can be found in @ — Network types.

e Empty: allows users to use applications not directly tied to a defined network object

CTR used for Chicago Reliable Routing project

FORT: a static network format which describe networks using a forward star structure

FORTNO: this is the same as FORT, except it is network topology only

TAPAS: a static network format used by Hillel Bar-Gera

TAPASNO: this is the same as TAPAS, except it is network topology only

GTFS: Google Transit Feeder Specification
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[ Help -
i E:
Hide [ G
Contents | Index | Search | A quick tutorial _
% Network types VNET, wiitten by Marco Nie at Northwestern University’s NUTREND lab,
Applications g

5] Novioiing areptics provides a simple, flexible and extensible visualization environment to support a
varety of network-related applications.
Getting started

VNET is very easy to navigate because it has 2 linear structure. All operations
are structured and executed following a well-defined path, as described below.

.

Step 1: Specify a network type — choose one from the dropdown list

Step 2: Choose a hase file from the set of required files for the selected
network type (any file can be used) by clicking ‘j

Step 3: Load and navigate network (for how to navigate, label and export
network layers and plots, please check network navigation).

To load the specified network, click ﬁ

Step 4: Choose an app — choose one from the dropdown list, which will
be built according to network type.

Step 5: Run the app — click ﬂ

Step 6: Choose a post-run operation for analysis — choose from the
dropdown list, which will be build according to app.

Step 7: Run the post-run operation. Click

At any point, users may re-select an app or a file name - reselecting a file name
necessitates a network re-loading, and reselecting an app necessitates a new app
un.

Network apps in VNET ate organized based on various types of networks.
Currently four types of network are supported, as lained here. licati i

Figure B.2: Help window

e NETGTFS: introduced by Marco Nie as a processed GTFS format
B.4.2 Load network file

Once network type is specified, clicking -/ to choose the base network file. Note that a
valid network may contain multiple files with different extension. Any of them can be chosen to
represent the network. Then, click ﬁ to load the network into VNET. Once a network is loaded,

the main window provides an overview of the loaded network.
B.5 Applications Panel

Applications panel includes two components. The first one is a generic component which
deals with the topology of the network (Figure B.3(a)). The second one is network type sensitive
(Figure B.3(b)). The applications vary for different network type. Two network types are specifi-
cally related to transit, i.e. GTFS and NETGTFS. In the following of this section, the applications

of the two types are discussed.
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oD

Origin | 238 |—j

Destination | 283

Network layers

- [~ Show Label
= || Basic layers Applications
=" Stops -
= * METRO nodes | D J | Standard transit routing j ﬂ
- Size
[wl:" METRO dwell nodes | _
%" METRO lines d s’@*j =1,
[y walks
[ Application layers E 3 ) Post operations
[#1"% ESRI-shape layers | J
a) Generic component of Applications Panel b) Network type sensitive component of Applications
p pp yp p pp
Panel

B.5.1 Generic panel

The generic panel provides universal functionality across all network type. Specifically, it

provides functionality to deal with OD pairs and map layers.
1. O-D There are two ways to identify an OD pair.

- Input box Enter the OD pair directly into the boxes in the OD panel

- OD selection window Click =! to open the "VNET Object Selector” window (Figure
B.3). The window provides a list of information about the network nodes. Choose
”0rigin” or ”Destination” from the drop list. Select any node from the list and click

b to finalize the selection. Once it is done, the OD pairs are updated.

2. Network Layers Display different layers and objects on the map.

- Show/Hide layers: Check the box next to each layer to show/hide the layer (Figure
B.4(a)).

- Show label: Check the box to show the selected label on the map. The label can be
selected from the drop list below the check mark (Figure B.4(b)). The size of the label

can be adjusted through the slide bar.
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7 VNet Object Selector [ 5
i) Pattern Type | Length MeanHeadway | VarHeadway | MeanTravelTime | VarTravelTme =~
1 01-0-107 Enroute  4.67 0.00 0.00 6.00 0.00 :
2 01-0-107 Enroute 2,13 0.00 0.00 4.00 0.00 |=|
3 01-0-107 Enroute  3.39 0.00 0.00 5.00 0.00 N
4 01-0-107 Enroute  1.71 0.00 0.00 3.00 0.00
5 01-0-107 Enroute  3.14 0.00 0.00 5.00 0.00
& 01-0-107 Enroute  3.43 0.00 0.00 5.00 0.00
7 01-0-107 Enroute  4.44 0.00 0.00 5.00 0.00
8 01-0-107 Enroute  1.35 0.00 0.00 3.00 0.00
9 01-0-107 Enroute  1.44 0.00 0.00 4.00 0.00
10 01-0-107 Enroute  0.35 0.00 0.00 1.00 0.00
11 01-0-107 Enroute  1.26 0.00 0.00 5.00 0.00
12 01-0-107 Enroute  5.64 0.00 0.00 7.00 0.00
13 01-0-107 Enroute  0.38 0.00 0.00 1.00 0.00
14 01-0-107 Enroute  0.43 0.00 0.00 2.00 0.00
15 01-0-107 Enroute  0.53 0.00 0.00 1.00 0.00
16 01-0-107 Enroute  1.04 0.00 0.00 200 0.00
17 01-0-107 Enroute  0.89 0.00 0.00 2.00 0.00
18 01-0-107 Enroute  1.60 0.00 0.00 3.00 0.00
19 01-0-107 Enroute  1.05 0.00 0.00 200 0.00
20 01-0-107 Enroute  1.61 0.00 0.00 4.00 0.00
21 01-0-107 Enroute  1.49 0.00 0.00 4.00 0.00
22 01-0-107 Enroute  1.50 0.00 0.00 3.00 0.00
23 01-0-107 Enroute  2.43 0.00 0.00 4.00 0.00
24 01-0-107 Enroute  1.95 0.00 0.00 5.00 0.00
25 01-0-112 Enroute  3.39 0.00 0.00 5.00 0.00
2% 01-0-112 Enroute  1.71 0.00 0.00 3.00 0.00
27 01-0-112 Enroute  3.14 0.00 0.00 5.00 0.00
28 01-0-112 Enroute  3.43 0.00 0.00 4.00 0.00
29 01-0-112 Enroute  4.44 0.00 0.00 6.00 0.00
30 01-0-112 Enroute  1.35 0.00 0.00 3.00 0.00
31 01-0-112 Enroute  1.44 0.00 0.00 4.00 0.00
32 01-0-112 Enroute  0.35 0.00 0.00 1.00 0.00
33 01-0-112 Enroute 1.26 0.00 0.00 5.00 0.00
34 01-0-112 Enroute  5.64 0.00 0.00 7.00 0.00
35 01-0-112 Enroute  0.36 0.00 0.00 1.00 0.00
k. 01-0-112 Enroute  0.43 0.00 0.00 2.00 0.00
37 01-0-112 Enroute  0.53 0.00 0.00 1.00 0.00
38 01-0-112 Enroute  1.04 0.00 0.00 2.00 0.00
39 01-0-112 Enroute  0.89 0.00 0.00 2.00 0.00
40 01-0-112 Enroute  1.60 0.00 0.00 3.00 0.00
41 01-0-112 Enroute  1.05 0.00 0.00 2.00 0.00
42 01-0-112 Enroute  1.61 0.00 0.00 5.00 0.00
43 02-0-106 Enroute  1.95 0.00 0.00 4.00 0.00
4“4 02-0-106 Enroute 2,43 0.00 0.00 4.00 0.00
45 02-0-106 Enroute  1.50 0.00 0.00 3.00 0.00 -
1 [ ] 3

Al _
O] Ex

Figure B.3: VNET Obiject Selector window

- Edit layer properties: Double click a layer to open ”Graph and Objects Properties”

window, Figure B.4.

- Show layer properties: Click to show the layer information

B.5.2 GTFS Applications

The GTFS applications are activated when GTFS is selected as the network type. In the
current version, the GTFS applications mainly serves as an interface to transform GTFS format

to NETGTFS format. The current version only consists of one application.
1. Build transit network: Follow the next three steps to start the application.

Step 1. Set routing parameters by clicking o
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_ ™ show Label
= [] Basic layers
2" Stops [ |
=" METRO nodes S
=" METRO dwell nodes .
2\ METRO lines -
[Py walks
D.ﬂ Application layers ) :}
[958 ESRI-shape layers
(a) Show/Hide layers (b) Show labels
[ Graph and objects properties [=5=)
e Fort g |20 Lyer | B |
ofE links for 120105
{5l Walks Point shape
e
i-.[W] METRO nodes °
. Stops " square

" Triangle

Close

Figure B.4: Graph and Objects Properties window

Step 2. Reload the parameters by clicking . Note that reload must be executed very time

the parameters are changed.

Step 3. Run the application by clicking 5“. Once the application is ready, there are two

post-operations available.
Once the application is ready, there are two post-operations available.

e Plot trip trajectories: Select a trip, then use this post-operation to show the trajecto-

ries, see Figure B.5.

e Export: export the GTFS format to other geographical format. In the current version,

three options are available: (1) ESRI shape; (2) NETGTFS; (3) TAPAS.
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Trip trjajestory for reute pattern 01.0-107

Time of day

Figure B.5: All-to-one tree

B.5.3 NETGTFS Applications

The NETGTFS applications are activated when NETGTFS is selected as network type. The

current version of VNET contains two applications:

e Standard transit routing: Transit Router application generates the all-to-one tree rooted

on the destination

e Real-time transit data viewer: Transit Data Viewer Vviewer application provides visual

aids to analyze transit real-time data

1. Standard transit routing: Follow the next three steps to start transit routing. A all-to-one tree

is returned after execution, Figure B.6.

Step 1. Set routing parameters by clicking &

Step 2. Reload the parameters by clicking . Note that reload must be executed very time

the parameters are changed.

Step 3. Run the application by clicking R
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Applications

| Standard transit routing j &
#| O

Post operations
[nterpret current routes - ‘331
Node 233 @ Stop 17TH -

MNode 239 @ Stop 16TH
Node 240 @ Stop 19TH
Node 241 @ Stop 19TH_N
Node 242 @ Stop 24TH
MNode 243 @ Stop ASHB
Node 244 @ Stop BALB
MNode 245 @ Stop BAYF
Node 246 @ Stop CAST
MNode 247 @ Stop CIVC
Node 248 @ Stop COLM
MNode 249 @ Stop COLS
Node 250 @ Stop COMC
MNode 251 @ Stop DALY
Node 252 @ Stop DBRE
MNode 253 @ Stop DELN
Node 254 @ Stop DUBL
MNode 255 @ Stop EMBR
Node 256 @ Stop FRMT g
MNode 257 @ Stop FTWL

Node 258 @ Stop GLEN

MNode 259 @ Stop HAYW

Node 260 @ Stop LAFY

MNode 261 @ Stop LAKE

Node 262 @ Stop MCAR.

Node 263 @ Stop MCAR_5

Node 264 @ Stop MLER.

Node 265 @ Stop MONT

Node 266 @ Stop NBRE

MNode 267 @ Stop NCON N

m

Figure B.6: All-to-one tree

Routing parameters greatly influence the result. The current version provides three routing

schemes, Figure B.7.

e Fastest route: standard shortest path problem

e Frequency-based hyperpath: shortest hyperpath algorithm. Once frequency-based

hyperpath is selected, other parameters can be set:
- Headway distribution: specifies the bus headway distribution, three options are
available: exponential, erlang and deterministic

- Information availability: three options: (1) no information (passengers have no
knowledge about route waiting time) (2) information (passengers know every-
thing including waiting time) (3) partial information

- Attractive set method: either greedy method or enumeration
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ptssp.app - WordPad = | B
File Edit View Insert Format Help
Deed & # [i= c.

Fsl—Iransi: routing type

% 1 - Fastest route;

E3 2 - Fregquency-based hyperpath (minimum expected time:

% 3 - Schedule-based fastest route

1

%$2-Default headway distribution (frequency-based routing only: 1 - exponential 2 - Erlang 3 - deterministic)

z

$£3-Default segment running time distribution (frequency-based routing only: 0 - determisitc: 1 - uniform 2 - exponential 3 - normal ¢ - Gamma)

a

%4-Information availability at stops (0 - no information anywhere: 1 - information everywhere: 2 - partial information (read from run-data file).

a

$5-Attractive set generation method (only if informaiton availability is not 1, 0O - greedy method (faster and coarser): 1 - enumeration (slower and exac
a

%6-Line ranking method (only if greedy method is selected for attractive set generation, 1 - rank only bkased on line travel time: 0 - rank based on line
1

%7-Default Erlang scale parameter, used to generate variance of headway from itz mean according to erlang distribution

% Must be a number between 2 and 20. If a number outside this range is given, the variance in run data file will be

% used to generate this parameter for each line.

o

o m v

For Help, press FL NUM

Figure B.7: Parameter setting window for transit routing

e Schedule-based fastest route: a new feature to be added in the future

After running transit routing, several post operations are available. Select one post opera-

tion and click " to execute.

Interpret current routes: Click " to display the detailed route information.

Save current route: Save current route for post operations.

Compare saved routes: Compare multiple saved routes.

Delete saved routes: Deleted the selected routes from saving list.

Interpret saved routes: Interpret multiple routes.

2. Real-time transit data viewer: Following the next three steps to start real-time transit data

viewer. The parameter setting window is shown in Figure B.8.

Step 1. Set routing parameters by clicking &
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gtfsrt.app - WordPad = | (B
File Edit View Insert Format Help
Dl & # B B

1. Database name from which transit operational data are to be read (NUPostgres/CTAOracle)

NUPostgres

$2. Exclude dwell time from segment travel time (not recommended)

0

$3. Export format for trips (1-5)

% 1 - Save mean and variance of segment travel times to the default running data file (_rdat.txt):
2 - Detailed trip information;

3 - Headway cbservation;

4 - Segment travel time observations;:

5 - Dwell time observations.

[N )
"

. Consolidate distributons (0/1 - consolidation may save memory at the cost of losing fedelity of representation)

For Help, press F1

Figure B.8: Parameter setting window for data viewer

Step 2. Reload the parameters by clicking . Note that reload must be executed very time

the parameters are changed.

Step 3. Run the application by clicking R

The post operations include the following options. The function of each operation is self-
explanatory. Once a option is selected, click S to run the operation. Note that, some

operations requires multiple inputs.

- Load trips

As in Figure B.9, the upper block shows the pattern ID. Note that each pattern repre-
sent a geographic sequence of stops to form an actual route. However, different route
bearing the same route ID may have different patterns. For example, route A may

have both weekday pattern and weekend pattern.

Once a pattern is selected, all the trips associated with the pattern are displayed in the
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Post operations

Load trips - b;x

01-0-107
01-0-112
02-0-106
02-0-107
04-0-105
05-0-105
06-0-101
07-0-106
08-0-104
11-0-105
12-0-105

TriplD #Stops | StarfTime EndTme | »
DR1 5 06:00:00 07:00:00 E‘
10R1 13 06:15:00 o7:is00 |0
11R1 15 06:30:00 07:30:00
1R1 18 06:45:00 07:45:00
1R1 18 07:00:00 08:00:00
1R1 18 07:15:00 08:15:00
15R1 18 07:30:00 08:30:00
16R1 18 07:45:00 08:45:00
17R1 1 08:00:00 02:00:00

18R1 18 08:15:00 09:15:00 2

Figure B.9: Parameter setting window for data viewer

lower block. The trip information is also displayed. From here one, VNET applications

can be used for analysis.
- Clear loaded trips: Delete loaded trips from the memory.
- Save loaded trips: Save loaded trips for future comparison

- Plot trips (loaded): Once trips are loaded, this tool can be used to plot the real

time-spatial trajectory of the trip, see Figure ??.

- Plot trips (Scheduled): In contrast to the real time-spatial plot, scheduled time-spatial
plot can be drawn with this tool, see Figure ??. It is clear that real plot exhibits
variations during the time of operation. In extreme cases, we can observe bunching or

even overlapping.

- Plot trips (both: We can also plot both in the same graph to examine how the real

data deviates from the scheduled data.

- Segment statistics:  Plot the Probability Density Function (PDF) and Cumulative

Density Function (CDF) of travel time and speed for the selected segment, see Figure
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2.
- Headway statistics: Display the PDF and CDF of the headway distribution over the
selected segments, see Figure ??.

- Spatial headway analysis: Display headway variation as a function of distance. In
most cases, as the distance from the origin increases, the headway variation increases,

see Figure ??. A more detailed analysis can be found in the Case study section.

- On-time statistics: Display the PDF and CDF of on-time deviation from the schedule,

see Figure ??.
- Spatial on-time analysis: Display on-time distribution and percentile, see Figure ?7?.
- Dwell time statistics: Display the PDF and CDF of dwell time, see Figure ??.

- Spatial dwell time analysis: Display dwell time deviation and percentile, see Figure

??.
- Export loaded trips: Export loaded trips into .txt files.
- Export all trips: Export all trips into .txt files.

- Simulation: To be added in the future version.
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