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ABSTRACT

In this paper we present a transportation video coding and
transmission system specifically tailored to automated vehicle
tracking applications. By taking into account the video char-
acteristics and the lossy nature of the wireless channels, we
propose error control approaches to enhance tracking accu-
racy. The proposed system is shown to give performance im-
provement over the current state-of-the-art system and yields
bitrate savings of up to 60%.

Index Terms— Transportation video, forward error con-
trol (FEC), error concealment, object tracking, H.264/AVC,
surveillance centric coding

1. INTRODUCTION
Remote imaging sensors are commonly deployed for trans-
portation monitoring and surveillance applications. Often the
captured video needs to be transferred back to a central office
for processing. The bandwidth limitation of the current wire-
less communication channels necessitates the use of video
compression technologies at the remote sensors. Recently,
H.264 started to be used in transportation video related ap-
plications, and has significantly reduced the bandwidth re-
quirement. However, most of the systems currently in use
are not specifically optimized for transportation videos and
the automated analysis that might follow, and hence, the sys-
tem performance as well as visual quality of the video will be
severely affected.

Another challenge faced by the transportation video trans-
mission system is the lossy nature of the wireless channels.
The highly dependent H.264 bitstreams are sensitive to chan-
nel degradations, suffering error propagation due to predictive
coding structure. There is significant interest in resource-
distortion optimization given channel losses [1, 2]; however,
these works focus on maximizing PSNR and do not con-
sider the accuracy of object tracking. Recently, [3] proposed
tracking-optimal modifications to H.264 compression that
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increase automated tracking accuracy in the receiver. Fur-
thermore, in [4], certain aspects of equal error protection
(EEP) were introduced for protecting H.264 bitstreams used
in transportation monitoring applications.

In this paper, we propose a transportation video transmis-
sion system to consolidate bitrate on important video informa-
tion and protect it with error control techniques. At the trans-
mitter, we propose to use forward error control (FEC) with
unequal protection levels to minimize the overall loss prob-
ability of the important packets while conserving the band-
width resource. At the receiver side, we compare several er-
ror concealment (ERC) strategies, and propose the temporal-
domain motion copy (MC) algorithm for transportation video
decoding. The contributions of this paper are centered on op-
timizing:

• system behavior
• unequal error protection (UEP) approaches; and
• optimal concealment strategies,

from the viewpoint of maximizing tracking accuracy at the
receiver’s end. Although, other works dicuss video-quality
rate tradeoffs [1, 2], this is the first treatment of identifying
beneficial error mitigation and concealment strategies towards
maximizing tracking accuracy while minimizing the compu-
tational load of the encoder.

The rest of this paper is organized as follows. In Section 2
we provide a brief overview as well as detailed explanations
to the proposed system modules. In Section 3 we present ex-
perimental results using real-life test videos and demonstrate
the effectiveness of our proposed system, which shows perfor-
mance improvements compared with the state-of-the-art im-
plementation and yields bitrate savings of up to 60%. Finally,
the paper is concluded in Section 4.

2. PROPOSED METHODS
2.1. Performance Metric
In our system of transportation video surveillance, the ulti-
mate application is to track (automatically) the objects (e.g.
vehicles) in the video and to perform subsequent operations
based on the tracking results. Therefore, objective metrics are



necessary to quantify and optimize the tracking performance
of the overall system.

In [5], a review of the state-of-the-art for video surveil-
lance performance metrics is presented. We choose the Over-
lap (OLAP), Precision (PREC) and Sensitivity (SENS) met-
rics presented in [3] due to their pertinence to the transporta-
tion tracking application. The tracking accuracy A is defined
as a convex combination of the three components. Due to
space limitation, we omit the details in this paper and the in-
terested readers are referred to [3].

2.2. Overall System Description
The overall block diagram of the proposed transportation
video transmission system is illustrated in Fig. 1. We denote

Fig. 1. System Diagram.

the input video as V and the output of encoder as Ṽ. Ṽ
is associated with the bitrate R and consists of video slices
encapsulated into packets. The packets are protected with
FEC schemes, which modify the bitrate to R′(R,FEC). The
protected packets are transmitted over the wireless channel
characterized by a loss pattern. The received bitstream V̄ is
then decoded with its possible losses concealed by the ERC
module at the decoder. Finally, the decoded video V̂ is used
for various applications such as object tracking.

As illustrated in Fig. 1, the preprocessing step filters the
video for encoder as well as provides information for FEC.
FEC utilizes the channel state information (CSI) feedback
from the channel to determine the appropriate protection
schemes. In this work we design the FEC at the transmitter
and the ERC at the receiver to achieve the optimal balance
between bitrate and accuracy, while always maintaining a
low-computational profile at the encoder. In the following
paragraphs, we will present our approach in detail and com-
pare it with the current state-of-the-art implementation.

2.3. Preprocessing
The preprocessing step serves two purposes: (1) to filter the
input video sequence to remove temporal noise for encod-
ing and (2) to generate a region-of-interest (ROI) map for
error protection. The filtering process is performed using
the Temporal Deviation Thresholding (TDT) algorithm intro-
duced in [3]. The TDT algorithm removes noise-like varia-
tions from the raw video before encoding, and re-inserts syn-
thesized noise back to the decoded video prior to tracking.
For further details on TDT, the reader is referred to [3]. As
shown in [3], TDT allows for up to 90% reduction in bitrate
required for a given level of tracking accuracy.

The ROI map provides a guidance to the FEC operation
by classifying the video packets into a foreground group

and a background group. Such classification is based on a
non-parametric model of the temporal distribution of pixel in-
tensities [6]. The goal is to isolate the regions showing events
of high tracking interest (e.g., vehicles moving in streets)
from regions undergoing constant changes (such as waving
trees, water fountains, or light reflections). Specifically, let
ft(n1, n2), denote intensity of pixel located at (n1, n2) in the
tth frame. In order to detect the ROI, we use the kurtosis of
intensities for each pixel position over time, defined as:

κ(n1, n2) =
1
T

∑T−1
t=0 (ft(n1, n2)− f̄(n1, n2))

4

( 1
T

∑T−1
t=0 (ft(n1, n2)− f̄(n1, n2))2)2

− 3,

(1)
where f̄(n1, n2) is the mean value of the intensities over the
training length T . Note that T is less than the length of the
entire sequence. In practice, if the scene is relatively fixed
(e.g., the camera is mounted on a pole), a single ROI can be
used for a relatively long time, until significant scene change
occurs. The value of T can be calculated based on the sta-
tistical stationarity of the input video sequence. The training
length should be selected to the balance between good statis-
tical stability and computational complexity.

By definition, a Gaussian distribution has an excess kurto-
sis of 0. Furthermore, the additive property of kurtosis implies
that a mixture of Gaussians also has an excess kurtosis of 0.
Since the capture noise is modeled as additive Gaussian, and
the constant movements of objects (such as trees) can be mod-
eled as a mixture of Gaussians, they both can be characterized
as having kurtosis of 0 [6]. The desired type of motion due to
events such as moving vehicles can be modeled as a Poisson
process, which has excess kurtosis of 6. Based on the above
discussion, we can build the ROI map of pixels by threshold-
ing their excess kurtosis values. For computational reasons,
the threshold is set to a fixed value of 3, the middle point be-
tween the kurtosis values of the two models. Once the pixels
are classified, the mapping of macroblocks can be done based
on a majority vote rule. Specifically, the MB classification
is determined by the majority class of pixels within that MB.
The generated MB-level ROI map is fed into the FEC mod-
ule, in which it is used to guide the assignment of protection
levels, as explained in the next subsection.

2.4. Forward Error Control
The FEC module improves error resilience of the transmitted
packets by adding redundancies in the encoded bitstreams.
There exist various approaches for adding redundancies, in-
cluding both intra-packet FEC and inter-packet FEC [7, 8].
Considering the limited computational resources at the re-
mote node, we propose a simple yet effective channel pro-
tection methodology using redundant slices (RS) to minimize
the overall packet loss probability in the wireless transmis-
sion.

In order to model the packet loss pattern, we consider a
memoryless and uniformly distributed fading channel. Each
unprotected packet is therefore subject to channel loss with



probability Punprot. Let i ∈ [0, I − 1] be the packet (slice)
index, and c(i) be the total number of copies transmitted for
packet i. Then the overall loss probability for packet i after
FEC is Pi = P

c(i)
unprot, while the aggregated bitrate for packet i

is R′
i = Ri · c(i), where Ri and R′

i are the bitrates before and
after the FEC, respectively.

The assignment of protection levels (in terms of the num-
ber of copies transmitted for a packet) constitutes a trade-off
between effective bitrate and the loss probability. Given the
ROI map, we divide a video frame into slices in such a way
that all the MBs in a single slice belong to the same group.
We modified the H.264 encoder to enable this custom MB to
slice mapping. For foreground slices, we assign the protection
level H = 1, 2, · · · , and for background slices, we assign the
protection level L ≤ H . The values of H and L can be se-
lected based on the maximum supported bitrate R̂ and a target
overall loss probability Ptarget. Specifically, let IH denote the
set of foreground slices, and let IL = {0, 1, · · · , I − 1} \ IH ,
where “\” is the set difference operator. The following proce-
dures can be carried out to determine H and L:
ctarget =

⌈
logPunprot

(Ptarget)
⌉
;

if ctarget
∑

i∈IH
Ri +

∑
i∈IL

Ri > R̂ then

H =
⌊
(R̂−

∑
i∈IL

Ri)/
∑

i∈IH
Ri

⌋
;

L = 1;
else

H = ctarget;

L =
⌊
(R̂− ctarget

∑
i∈IH

Ri)/
∑

i∈IL
Ri

⌋
;

end if
The underlying assumption here is that R̂ can support at

least one copy of each packet (in either group). If this assump-
tion is violated, then we can prioritize importance packets and
drop the less important packets first [9].

2.5. Error Concealment
In our application where FEC is utilized, a lost packet will
not be retransmitted, and consequently the information con-
tained in the lost packet must be estimated in the decoding
process. The estimation of the lost video content using the
reconstructed video content available at the decoder is known
as error concealment (ERC).

In general, ERC works by utilizing the spatial or tem-
poral correlation between the lost information and its neigh-
bors [10]. A typical example of ERC scheme utilizing spatial
correlation is the boundary matching algorithm (BMA) [11],
which is implemented in the JM H.264 reference model. The
algorithm works by interpolating the video content from reli-
ably reconstructed spatial neighbors into the region with in-
formation loss. The interpolation option is selected to mini-
mize the discrepancies of the boundaries surrounding the lost
region.

Besides spatial ERC represented by the BMA, there are
ERC schemes making explicit use of the temporal correla-
tion. Two straightforward but intuitive examples in this cate-

gory are the frame-copy (FC) algorithm and the motion-copy
(MC) algorithms [12]. FC works by directly copying the co-
located pixels from the previously reconstructed frames into
the current frame. Similarly, the MC algorithm copies the mo-
tion information and then reconstructs the pixel values using
such estimated motion information. In a simple case, the MC
algorithm copies the reference picture index from the previ-
ously decoded frame, and then scales the motion vectors ac-
cordingly.

In transportation videos, it is reasonable to assume the ob-
jects of tracking interest exhibit smooth and consistent trans-
lational motion throughout consecutive frames. Therefore,
the MC algorithm is potentially able to accurately estimate the
motion information. The MC algorithm is particularly suit-
able for the preprocessed video, because the pixel variations
not due to translational object motion have been suppressed.
With the MC algorithm, the scaled motion vector and extrapo-
lated reference frame index provide reliable reconstruction of
the lost video information using its temporal predecessors. In
the numerical examples below, we demonstrate that the MC
algorithm indeed outperforms the other ERC schemes, and
in particular the spatial BMA algorithm, in terms of tracking
accuracy improvement.

3. NUMERICAL EXAMPLES
To verify the gains made possible by our proposed schemes,
we conduct experiments using multiple sequences with dif-
ferent characteristics such as viewing angles, quality and type
of observed vehicle traffic. Details of the sample implementa-
tion and experimental procedure with the test results are pre-
sented below.

To implement the proposed system, the open-source JM
16.2 encoder with FMO enabled is used to read in the ROI
map from the preprocessing step and to allow for packetiza-
tion of the two different slice groups, and the JM decoder
is modified to enable the FC and MC strategies. The JM de-
coder has a built-in BMA for error concealment, and it is used
as a reference for performance evaluation. The open-source
OpenCV “blobtrack” module is used as the object tracker
which relies on the mean shift object tracking algorithm [13].

The following video sequences are used for the experi-
ments. The “Camera6” sequence used under the NGSIM li-
cense courtesy of the US FHWA shows an intersection with
light traffic, with trees swaying in the wind and buildings
casting reflections of passing cars as part of the scene. The
“dt passat” sequence by courtesy of KOGS/IAKS Universität
Karlsruhe shows a busy intersection with steady traffic inter-
rupted by a traffic signal and a light urban rail crossing. Both
sequences contain significant capture noise.
3.1. Effect of TDT
In this subsection, we demonstrate the effect of the TDT pre-
processing step and compare its performance with that of the
baseline H.264 implementation. The packet loss probability
is set to be 0.1. The implementation with TDT and EEP at
the transmitter and with BMA at the receiver is referred to as



the “Reference System”, and is denoted by the red curves in
Fig. 2. The baseline H.264 implementations are denoted by
the green (with EEP) and blue (without EEP) curves in Fig. 2.
The effect of the TDT preprocessing is significant; it reduces
the bitrate by up to 90% for the same tracking accuracy.
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Fig. 2. Effect of TDT preprocessing.

3.2. Comparison of Error Concealment Strategies on
Tracking Accuracy
Here, we compare the BMA, FC, and MC algorithms in terms
of their effectiveness in recovering the lost information and
maintaining tracking accuracy. The channel model remains
the same as in the previous subsection. The videos are en-
coded with various quantization parameters (QPs) and for
each QP eight random channel realizations are obtained. In
order to obtain a fair comparison, for each realization, the
same lossy bitstreams are decoded using the various ERC
schemes, and the final tracking accuracy results of each real-
ization are averaged.

As is evidenced by Fig. 3, the spatial-domain scheme
represented by the BMA in general performs worse than its
temporal-domain counterparts. This highlights the charac-
teristics of transportation video, and contrasts the unique
requirements of a tracking application to the conventional
viewing-oriented application. Comparing the MC and FC
algorithms, the MC shows some advantage because it makes
better use of the available motion information embedded in
the previously decoded frames. The experimental results
verify our theoretical reasoning and intuition made in the
previous section.
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Fig. 3. ERC comparison (packet loss probability of 0.1.)

3.3. ROI Extraction
In this subsection we illustrate the ROI map generated from
the preprocessing step. After analysis of the video statistics
(excess kurtosis), the preprocessing step identifies the regions
in the video where motion of tracking interest is likely to
occur, and generates an ROI map that is used to divide the

video frame into different slice groups. The ROI map for the
“dt passat” sequence and the slice group mapping are shown
in Fig. 4 (a) and (b), respectively. ROI maps for other se-
quences are similar and are omitted for brevity.

(a) ROI mapping (b) Frame w/ slice group mapping

Fig. 4. Example of ROI mapping. (“dt passat” sequence)

3.4. System Comparison
Finally, we integrate the proposed preprocessing, FEC and
ERC modules together into a complete system (referred to as
the “Proposed System” in what follows), and compare its per-
formance with that of the current state-of-the-art implementa-
tion (referred to as the “Reference System”). In the FEC mod-
ule, the Reference System applies EEP with protection level
of 3 (this value gave empirically the optimal performance).
In contrast, the Proposed System uses the protection levels
H = 3 and L = 2, respectively. At the receiver, the Refer-
ence System uses the default ERC scheme (BMA) while for
the Proposed System, we modify the JM decoder and imple-
ment the MC algorithm as an ERC module.

The performance comparisons are shown in Fig. 5. The
Proposed System denoted as “UEP32-MC” is plotted in red
curves, while the Reference System denoted as “EEP3-BMA”
is plotted in black curves. Two intermediate implementations
are also included for comparison. By including the “UEP32-
BMA” and “EEP3-MC’ implementations, we demonstrate
that it is the combination of UEP (at the FEC module) and the
MC (at the ERC module) that contribute to the overall system
performance improvement. As can be seen from the figures,
the Proposed System exhibits uniformly better performance
than the Reference System. Quantitatively, the Proposed Sys-
tem provides a performance improvement of 40% to 60%
bitrate reduction given the same tracking accuracy.

4. CONCLUSIONS

In this paper we presented a video coding and transmission
system specifically tailored to automated vehicle surveillance
and monitoring. The characteristics of transportation video
and the lossy nature of the wireless channels were consid-
ered when designing the system. To mitigate the negative
effects of channel losses to automated tracking of vehicles,
we combined forward error correction (FEC) with unequal
error protection (UEP) at the transmitter and an error con-
cealment (ERC) module at the receiver. The effectiveness of
the proposed system was demonstrated using real-life video
sequences, and the performance improvement over the cur-
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Fig. 5. Comparison of System performance.

rent state-of-the-art system in maximizing tracking accuracy
shown.
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