

Monitoring of Acoustic Emissions Using a Fiber Bragg Grating Dynamic Strain Sensing System

Brad Regez, Yan-Jin Zhu, Yinian Zhu, Oluwaseyi Balogun, and Sridhar Krishnaswamy

Department of Mechanical Engineering / Center for Quality Engineering and Failure Prevention Northwestern University Evanston, IL 60208

AEWG, Denver, Colorado, May 18, 2011.

Acknowledgement: ONR, NSF, CCITT

Dynamic Strain Monitoring System - requirements -

Goal:

Develop a network of high-frequency strain sensors with the following requirements:

- Always ready to detect and locate impact and other transient signals;
- Adaptive to detect dynamic strains (ultrasound-induced) in the presence of large quasi-static strains (structural deformationinduced) or thermal drift;
- Multiplexable for large sensor arrays.

Technology:

Optical Fiber Bragg Grating (FBG) Sensors and Multiplexed Two-Wave Mixing (MTWM) in adaptive photorefractive crystals.

- Fiber Bragg-Grating sensors as dynamic strain sensors
 - Current methods of demodulation
- Two Wave Mixing demodulator system
 - frequency response
 - sensitivity
 - cross-talk
- •Applications:
 - acoustic emission

- Fiber Bragg-Grating sensors as dynamic strain sensors
 Current methods of demodulation
- Two Wave Mixing demodulator system
 - frequency response
 - sensitivity
 - cross-talk
- •Applications:
 - acoustic emission

1με

Fiber Bragg Grating Sensors

Strain or temperature signal is spectrally encoded in the reflected / transmitted light from an FBG sensor.

$$\frac{\Delta\lambda_B}{\lambda_B} = \left[1 - \frac{n_{eff}^2}{2} \left[p_{12} - \upsilon(p_{11} + p_{12})\right]\right]\varepsilon_z + (\alpha_\Lambda + \alpha_N)\Delta T$$

1.2pm

- Bragg-gratings are refractive-index gratings in the optical fiber.
- They are very easy to fabricate.
- They are local sensors
- Several sensors can be readily multiplexed.
- Useful as temperature, strain sensors.
- Can be used for

13pm

dynamic strain sensing

Ref: A.Othonos, and K.Kalli, "Fiber Bragg Gratings," Artech House, Boston. (1999) Center for Quality Engineering and Failure Prevention

1°C

Current Approaches for Spectral Shift Demodulation

Demodulation Scheme	Readiness	Adaptivity	Multiplexability
CCD Spectrometer / AWG	Always	No	Demodulator for each sensor
Tunable Filter	Intermittent – Scanned	Feedback	Filter for each sensor
Tunable Source	Intermittent – Scanned	Feedback	yes
Interferometric	Always	Feedback	Demodulator for each sensor
MTWM system	Always	Self	Single demodulator

- Fiber Bragg-Grating sensors as dynamic strain sensors
 Current methods of demodulation
- Two Wave Mixing demodulator system
 - frequency response
 - sensitivity
 - cross-talk
- •Applications:

acoustic emission

Two Wave Mixing Interferometry in Photorefractive Crystals

In a nutshell:

- PRC's act as "novelty filters"
- Output only "sees" sudden variations in the input
- what is new is dictated by the PRC response time

Principle:

- Pump + Signal create a refractive index grating in the PRC
- Pump and signal beams diffract off the index grating
- Diffracted pump is a replication of the **quasistatic** signal beam
- Dynamic changes in the signal beam are not tracked by the PRC
- The transmitted signal beam effectively interferes with the diffracted pump beam and only dynamic changes in the signal beam are observed.

Ref: Yi Qiao, Yi Zhou, and Sridhar Krishnaswamy, (July 2006), "Adaptive two-wave mixing wavelength demodulation of Fiber Bragg Grating dynamic strain sensors", <u>Applied Optics, vol. 45, No. 21, pp 5132-5142.</u>

TWM Interferometer for Spectral Demodulation

- Bragg-sensor signal at λ_B split into two legs with optical path difference OPD 'd'
- The two-beams are mixed in a PRC to create a grating.
- Path-mismatch causes a phase difference between the two legs of:

$$\Delta \Phi(t) = -\frac{2\pi d}{\lambda_B^2} \Delta \lambda_B(t) + \varphi_n$$

- Quasistatic drift in λ_B compensated for by creation of new grating in PRC
- Dynamic changes in λ_B cause instantaneous phase shift at the PRC output.

Multiplexability

• A single TWM spectral demodulator can be used to demodulate multiple FBG sensors simultaneously by wavelength multiplexing.

 The different channels are separated after the PRC by band-drop filters.

0.1nm

1548nm

bandsplitter

reflection band

<1537nm & >1543nm

Center for Quality Engineering and Failure Prevention

Multiplexed 4-channel TWM spectral demodulator - crosstalk

• 20 kHz, 10kHz, 5 kHz and 2 kHz 5με strains were applied onto the four FBG sensors respectively.

• No detectable cross-talk

- Fiber Bragg-Grating sensors as dynamic strain sensors
 Current methods of demodulation
- Two Wave Mixing demodulator system
 - frequency response
 - sensitivity
 - cross-talk
- •Applications:

acoustic emission

TWM System NWU Prototype

Pencil Lead Break AE Data FBG vs. PZT

Source to Receiver Distance: 4 cm

Source to Receiver Distance: 5 cm

TWM Spectral Demodulation - Pencil Lead Break AE Monitoring -

Glass Fiber Composite Coupon

- Tyfo[®] SEH-51 Composite
 - Tyfo ® S Epoxy
 - Uni-directional Glass/Aramid custom weave [0/90]
- Composite Gross Laminate
 Properties:
 - σ_u =575 MPa, ϵ =2.2%, E=26.1 GPa
 - Laminate Thickness: 1.3mm

Collaborative work between NU & Harbin Institute of Technology (Li Hui) Center for Quality Engineering and Failure Prevention

Continuous AE – Matrix Damage

Burst AE – Fiber Damage

FBG Sensors Disadvantages / Advantages Over Piezoelectric Based Sensors

DISADVANTAGES

- Systems are more expensive than piezoelectric based systems
- FBG sensors are less sensitive than piezoelectric sensors

ADVANTAGES

- Smaller footprint
- Immune to electromagnetic signals or noise
- Minimum signal loss since cables are replaced by a fiber optic
- Exhibit long term stability
- Can be mounted underwater in needed
- Can be embedded within the structure
- Can be used in high temperature applications.

Conclusions

- TWM Wavelength demodulation demonstrated:
 - **1.** Always On: Wavelength demodulation induced by transient events is demonstrated.
 - 2. Adaptive: The TWM wavelength demodulator is demonstrated to have adaptivity to quasistatic drift (both strains and temperature).
 - **3.** Frequency response: High pass no upper limit from TWM.
 - 4. Multiplexability: Little detectable cross-talk.

Thank You!

Monitoring of Acoustic Emissions Using a Fiber Bragg Grating Dynamic Strain Sensing System

Brad Regez, Yan-Jin Zhu, Yinian Zhu, Oluwaseyi Balogun, and Sridhar Krishnaswamy

Department of Mechanical Engineering / Center for Quality Engineering and Failure Prevention Northwestern University Evanston, IL 60208

AEWG, Denver, Colorado, May 18, 2011.

Acknowledgement: ONR, NSF, CCITT