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1 Project Overview

Vehicle routing for disaster relief distribution involves many challenges that distinguish this problem
from those in commercial settings, given the time sensitive and resource constrained nature of relief
activities. While operations research approaches can improve the effectiveness of relief routing, these
challenges must be addressed in routing models in order to realize the potential of the approaches.
There have been many promising advances in the literature on relief routing, and aid organizations
have been collaborating with academic researchers to increase the practicality of such models. In-
creases in the availability and use of information technology in the wake of disasters can further
the effectiveness of routing models for aid distribution. Currently, challenges still remain to make
routing models more applicable to humanitarian assistance delivery and more integrated with new
streams of imagery, mapping, and crowdsourced real-time data.

This project focuses on dynamic routing models for the distribution of relief supplies and services
in humanitarian settings. We focus on the potential to improve these models, and thus improve the
effectiveness of humanitarian relief, by using new applications of mapping technologies and real-time
information to mitigate the effects of dynamic changes during humanitarian crises and disasters and
the significant uncertainty that exists in these settings. Our work evaluates the improvements
from these technologies for relief organizations in the field and develops a set of test cases for the
research community to better design and test their routing models and solution approaches. In the
present work, we take urban search and rescue operations as our study case, while maintaining a
focus on generalizability to other post-disaster operations. To facilitate wide implementation and
potential commercialization of our work, a developed test case is available online to practitioners and
academicians, through a server dedicated to Humanitarian and Non-Profit Logistics at Northwestern
University.

1.1 Needs Statement

Dynamic environments and uncertainty are the norm during disasters. Many of the datasets cur-
rently used in emergency response become critically out of date in a fast changing environment.
As a result, models and routing pathways often fall short of their intended goals to provide timely
transfer of goods and services to organizations and disaster-affected communities.

Whether it is routing metric tons of food during the 2012 Horn of Africa Food Crisis or rout-
ing ambulances in the Northeast in the aftermath of Superstorm Sandy, disasters require real-time
knowledge of changing environments. The information flows in such settings emerge from a complex
changing environment, and the humanitarian assistance world is left with persistent questions about
potential new data sources. These sources come from complex, interdependent systems and ques-
tions cannot be answered in isolation from each other, nor can they be resolved with the operations
and logistics models currently available. Routing and path planning models must be redesigned to
accommodate real-time information, while integrating specific characteristics of the evolving tech-
nology and data in a disaster relief setting.

Recent years have seen rapid growth in the application of technology to humanitarian relief
operations. Updated orthogonal imagery is made freely available by government agencies and com-
mercial sources, sometimes within hours of a disaster, so that damage to infrastructure can be
quickly assessed. Geographic information system (GIS) data layers on flood extents, earthquake
damage, medical dispensaries, settlement camps, and other spatial data can be made available for
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download and integrated into online map visualization tools. Mobile phones play a growing role
in aid coordination thanks to the high penetration of mobile technology throughout the world and
the ease of using Short Message Service (SMS) technology for data transmission. Mobile units are
increasingly used to send georeferenced updates on road networks, movement of displaced persons,
stocks of supplies, and other time-sensitive information, and this use is expected to continue to grow.

However, the potential for technology implementation in humanitarian relief still has a long way
to go before it is fully met. In 2011, the United Nations Office for Coordination of Humanitarian
Affairs (UNOCHA) and the Harvard Humanitarian Initiative investigated the humanitarian relief
sector’s struggle to accommodate the “information fire hoses” offered by new information sharing
tools and systems in the wake of the Haiti earthquake. The report recommended a framework for
addressing this shortcoming, including increased attention to innovation, experimentation, academic
evaluation, and coordination between the academic, technical, and practitioner communities [14].

1.2 Solution Approach

In this project, which received cost share from a grant through the Google Research Awards
Program[11], we consider the incorporation of real-time data elements as “inputs” for routing models
to improve humanitarian relief routing. In a recent study [5], we investigate gaps in existing routing
models through a review of operations research models for the transportation of relief goods and
interviews with aid organizations, ranging from government agencies to non-government organiza-
tions (NGOs) and commercial partners engaged in disaster relief. Importantly, both the nature of
uncertainty (e.g., the need for relief supplies, the availability of resources to address needs, and the
impact of the disaster on infrastructure) and the mechanisms available to mitigate this uncertainty
are very different from what is found in commercial settings. For example, travel times may vary in a
commercial setting due to congestion; however, one can model this uncertainty reasonably well with
a bounded distribution of travel time. In a disaster setting, the very existence of a path between
locations may not be known, or the lack of security of the path may restrict its use by response
agencies.

Our group began by researching dynamic models of humanitarian relief routing that explicitly ad-
dress the unique nature of this uncertainty in disaster relief and the feasible mechanisms to respond
to uncertainty. In this project, we focus on addressing uncertainty through using newly available
information to reduce it, in conjunction with routing models that are designed to accommodate
uncertainty. We address the question: how can operations research models exploit advances
in mapping technologies and real-time information to improve the distribution of hu-
manitarian relief? Specifically, we investigate how the identified sources of uncertainty in relief
routing can be mitigated through available real-time information about the affected region, taking
urban search and rescue (USAR) operations as a motivating case and a starting point for modeling.
To accomplish this, we

1. develop a testbed of routing problems designed specifically for humanitarian relief routing, to be
used by the research community to evaluate new modeling and solution approaches;

2. quantify the benefits of technology for agencies engaged in humanitarian relief through improved
operations research models that incorporate this technology; and

3. launch an online server housing the developed testbeds with the capabilities for other academi-
cians and practitioners to use as well as contribute to the database.

1.3 Research Team

Irina Dolinskaya is an Assistant Professor of Industrial Engineering and Management Sciences, and
holds the Junior William A. Patterson Chair in Transportation. Her research interests include op-
timal path finding in a direction, location and time dependent environments, and path planning
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with limited information about the region. Applications include problems in humanitarian logis-
tics, optimum vessel performance in evolving nonlinear wavefields, and autonomous navigation for
amphibious vehicles. Dr. Dolinskaya is currently working on a number of projects with the Of-
fice of Naval Research studying optimum vessel performance in evolving nonlinear wavefields and
autonomous navigation for amphibious vehicles.

Karen Smilowitz is an Associate Professor of Industrial Engineering and Management Sciences.
Her research focuses on freight transportation systems and non-profit and humanitarian logistics.
Recent projects have analyzed the opportunities and challenges of introducing operational flexibility
in distribution systems. Dr. Smilowitz has worked with a range of collaborators from industry and
non-profit organizations, including UPS, Coyote Logistics and the Mobile C.A.R.E. Foundation of
Chicago.

Jennifer Chan is an Assistant Professor of Emergency Medicine at Northwestern Memorial Hospi-
tal and an Associate Faculty member at the Harvard Humanitarian Initiative. Her research focuses
on crisis mapping and the integration of emerging technologies into humanitarian operations. Recent
projects include program evaluations of open-source technology organizations and co-authoring Dis-
aster 2.0, a UN Foundation report that analyzed the interface between humanitarian agencies and
volunteer and technical communities. Dr. Chan has worked with UN and NGO agencies, including
Oxfam America, UNOCHA, UNDP, and IRC providing technical and public health support during
humanitarian conflicts and natural disasters.

This research effort has included a number of undergraduate and graduate students, including
current Northwestern PhD students Luis de la Torre and Zhenyu (Edwin) Shi. The undergraduate
students engaged in the pilot study described in Section 2 are Alex Huang, Alex Ma, Sara Schmidt,
Nancy Xu, and Brandon Zhang.

Lewis Meineke is the Humanitarian and Non-Profit Logistics Research Coordinator at North-
western and provided technical assistance and data research on this project. In prior work at the
University of Chicago, Meineke managed spatial database creation and analysis for a National In-
stitutes of Health-funded research center in the fields of economic history and health economics.

1.4 Organization of this Report

This report is organized as follows: Section 2 describes a pilot project continuing from the outcomes of
the previous year’s CCITT project and demonstrating the feasibility of combining real-time mapping
technologies and crowdsourced data collection with operations research modeling to better inform
vehicle routing in the immediate aftermath of a disaster. This proof-of-concept project describes a
stylized model of a workflow for urban search and rescue operations, but is intended as motivation for
subsequent work and does not represent a final product. Section 3 elaborates on the data processing
techniques employed to generate the testbed data used in the project described in Section 2. It
provides a concrete discussion of technical considerations for generating usable routing data from
currently available data pipelines as well as summary data documentation for potential users of the
testbed. Section 4 describes our mathematical formulation of post-disaster vehicle routing as an
adaptive orienteering problem as well as solution approaches under development. Finally, Section 5
describes the next steps toward eventual realization of a new post-disaster routing technology.
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2 Test Scenario: Haiti 2010

2.1 Motivation

The response to the 2010 Haiti earthquake involved an unprecedented use of digital technology to
collect and disseminate information. The affected population made extensive use of cell phones,
not only for personal communication but as a means of mass communication and coordination.
Responders used aerial and satellite imagery, and digital maps derived from it, to gain situational
awareness in a poorly mapped environment. However, without prepared protocols for integrating
these novel data sources into their ground operations, relief distributors and search and rescue teams
were unable to make full use of them.

The years since the earthquake have seen a deepened understanding of the roles new technologies
can play in disaster relief, as well as the severe challenges involved in adequately putting these
technologies to use. In this pilot project, we combine recommendations from our previous study
with recent developments in the use of new technologies in disaster relief to assess the viability of
real-time data for urban search and rescue (SAR) team routing, using the response to the Haitian
earthquake as a test case. This study’s aim is to demonstrate proof-of-concept in developing potential
workflows to incorporate new data sources into vehicle routing and to scope the need for future work,
rather than to quantify true potential gains from a fully deployable set of tools. We also motivate
the future development of stochastic routing algorithms tailored to post-disaster settings and data
conditions.

De la Torre et al. [5] review the real-world problems related to vehicle routing for delivery
of goods and services in disaster-affected regions, analyze the representation of these problems in
current operations research models, and identify next steps for modeling, focusing on elements of
humanitarian relief distribution that make these settings differ from standard vehicle routing model
settings. These elements include, among others, uncertainty in demand and supply; incomplete
knowledge of the local road network and changing road conditions; and the need for routes to
change to accommodate new information. A distinct need is identified for models that incorporate
simultaneous uncertainties in supply, demand, network connectivity, and travel times in a dynamic
setting that allows operations to be modified in response to new information.

In this report, we describe how data sources of the type that appeared in the aftermath of the
Haitian earthquake could be incorporated into these future models, using a simplified preliminary
routing algorithm as a starting point. Section 2.2 introduces our data sources and processing work-
flows. Section 2.3 details two parallel solution approaches for using these data sources to generate
SAR routes, one based in a traditional static framework and one that incorporates real time infor-
mation. Section 2.4 discusses some results of the exercise and charts a course for future extensions.

2.2 Innovation: Integrating new data sources into relief routing

The chief innovation introduced in this pilot project is the integration of recently introduced real-
world data streams into a workflow for humanitarian routing in real time. We identify two data
streams that, together, provide sufficient inputs (graph structure, demand, and travel time) to
conduct routing analysis. We develop a simple algorithm to use these data sources as new data
arrive and use the development of this workflow to pose questions about the adaptation of these
data sources for this purpose. In future work, this data integration will allow us to benchmark
the performance of newly developed routing algorithms against real-world scenarios using historical
data.
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2.2.1 Data sources

Although a variety of data sources, such as aerial imagery and social media services, played signif-
icant roles in the aftermath of the Haiti earthquake and hold the potential to be integrated into
routing workflows, we restrict the present focus to two independent sources: Mission 4636 and
OpenStreetMap.

Mission 4636 was a mass communication initiative launched by a quickly organized team of
Haitians, academics, and members of the international humanitarian community shortly after the
earthquake struck. The system allowed Haitians affected by the earthquake to send informational
updates, including requests for help, via text message (SMS) to the shortcode 4636. This system was
announced over radio, one of the chief means of mass communication in the disaster’s aftermath.
The messages were translated into English, categorized by message type, and, when the message
contained location information, assigned geographic coordinates by Kreyòl-speaking volunteers, pri-
marily members of the Haitian diaspora, with additional contributions from nonprofits and activist
groups like Ushahidi Haiti [22]. This workflow produced information that could be shared with
response teams in near-real time–the median lapsed time from receipt of a message to translation,
categorization, and submission to the data consumption stream was less than five minutes, and over
80,000 messages were processed in total.

OpenStreetMap (http://www.openstreetmap.org) is a freely editable online mapping plat-
form with a wiki-like model designed to publish map updates from its broad user community within
minutes. Volunteers use data from a variety of sources, such as satellite and aerial imagery, public
datasets, and personal knowledge, to add information to OpenStreetMap’s (OSM) spatial database.
OSM employs a flexible data structure that allows volunteers to “tag” spatial data elements (points,
lines, and polygons) with essentially unlimited information in the form of key→value pairs. Because
both rendered maps and the underlying spatial data are made available, this rapidly updated data
source can be used directly by viewing maps or as input data for computer modeling.

In disaster settings, OSM has shown that it can generate a more complete and up-to-date map of
the affected area than would otherwise be possible. Since existing road maps of the affected area in
Haiti were incomplete, inaccurate, and insufficiently detailed for routing in the post-disaster phase,
or difficult to access if they were available at all, for many responding agencies OSM data quickly
replaced these maps, providing critical situational awareness for international volunteers and local
organizations. Its data on transportation networks and points of interest expanded dramatically in
the days following the disaster and became a frequently used source of geographic information for
many relief organizations.

2.2.2 Data processing

In this study, data for the non-real time model constitute a base to which real time data are added;
data inputs for the real time model are thus a superset of inputs for the non-real time model. The
base dataset comes from OpenStreetMap data from the Port-au-Prince metropolitan area on road
networks and locations of buildings with high estimated demand for search and rescue, such as
hospitals and schools. This dataset was chosen both because it offered a ready point of comparison
between real time and non-real time data processing from equivalent sources and because, although
little mapping had been done outside the core of Port-au-Prince by the day of the earthquake, OSM
still would have constituted a relatively good source of information in the Haitian setting, which
faced especially poor data availability because of the destruction of baseline maps and data in the
earthquake. The real-time data add two additional and independent streams: text messages sent to
4636 and post-earthquake road network updates from OpenStreetMap, both described above.

Figure 1 summarizes the procedure for processing non-real time data. We use a data layer of
building footprints from OpenStreetMap as it existed shortly after the earthquake, after an initial
period of spatial data entry had occurred. These building footprints are primarily sourced from
digitally traced (“heads-up digitized”) aerial imagery. We first filter buildings to include only sites
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Figure 1: Data processing workflow for non-real time model

Figure 2: Additional data processing workflow for real time model

likely to have high demand and vulnerable populations, such as hospitals, schools, and orphanages,
within Port-au-Prince. This filtering results in 224 demand nodes. We use footprints to calculate
building square footage to generate a rough estimate of demand at a site. We further restrict this
set to the 133 nodes with highest estimated demand for computational ease. Because the rest of the
process requires point data rather than polygons, we convert the data to points snapped to the road
network. Figures 3 and 4 show a portion of the final building dataset in map and tabular form.

2.2.3 SMS processing

Messages sent to 4636 were routed via an internet service to online volunteers and translated into
English, categorized according to a quickly purpose-built categorization scheme, and manually ge-
olocated using whatever location information was present in the message (the SMS protocol does
not send geographic coordinates, so the message itself was the only source of this information avail-
able). Both the categorization and the geo-location were conducted by volunteers on each message
individually and involved no automated data extraction. The categorization scheme allows rapid
filtering by message type. We use only messages 1) with non-missing geographic coordinates placing
the message within Port-au-Prince, 2) categorized as “People trapped,” “Person trapped,” or “Col-
lapsed structure,” and 3) sent during the five-day study period, 1/17/2010 through 1/21/2010. This
filtering reduces the number of text messages from over 30,000 to 22; most of this vast reduction
comes from the restriction to non-missing coordinates.

2.2.4 Road processing

For a more detailed description of the network data creation procedure, see Section 3.3.
To construct a retrospective set of road networks that reflects the state of information on each

day of the study period, we begin by making a data extract from an archived copy of OSM as it
existed immediately before the earthquake. We then apply each daily “changeset,” a record of all
data updates performed over the course of a period, in sequence, generating a full copy of OSM’s
data for Haiti for each day of the study period.

We then design network configuration rules for creating crude but serviceable network datasets
that can be used for routing. The most critical component of this configuration for our purposes
is the construction of a travel cost variable. The mandatory “highway” tag contains the road class
of a segment (as determined by the volunteer entering the data). Travel cost on each road segment
is estimated by the segment’s total length multiplied by a parameter c depending on this variable:
c = 1 for primary roads, c = 1.2 for secondary roads, c = 1.4 for tertiary, residential, and unclassified
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Figure 3: Locations of interest (dots) among major buildings in a portion of Port-au-Prince

Figure 4: Portion of building table after calculating estimated demand
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roads, and c = 1.6 for other minor roads. The parameters used are essentially arbitrary and serve
as a stand-in for empirically determined parameters derived from the literature or from ground
experience; travel costs associated with different road types are likely to vary by locality. Since
these parameters simply scale travel cost based on shape length, they are functionally unitless and
have only relative meaning.

Volunteers used OSM’s key-value data structure to store information about road traversability
(e.g., impassable → ‘yes’). While it would have been possible to include this information in the
network dataset creation, we elected not to in the present work because comparing the results of
the real time and non-real time models would have required penalizing the non-real time model for
sending routes over non-traversable roads; this is a straightforward extension left for future work.

Each of the constructed network datasets corresponding to one day of the study horizon is used
together with the corresponding day’s list of demand nodes to construct an origin-destination (OD)
matrix storing pairwise travel times. These OD matrices are generated using the OD matrix solver
built into the geographic information system used in the project, ArcGIS. This solver is a proprietary
implementation based on Dijkstra’s algorithm for finding shortest paths and is integrated directly
with the ArcGIS network data structure. Since roads were being added and corrected very rapidly
over the study period, the estimated travel time between two points could change dramatically in a
short time.

2.3 Solution approach

We model the scenario as an orienteering problem. The decision-making unit, a single mobile team,
is given a list of demand nodes, each with an associated demand (score) and location. The team
moves along a graph consisting of vertices connected by edges, each with an associated travel cost
(considered here to be travel time). Demand nodes are located on these vertices. In addition to
travel time, each node imparts a stopping time that is assumed to be an increasing linear function of
demand at that node. The objective is to maximize the total demand served over the study period
by selecting a set of nodes to visit, and the order in which they are visited, each period, subject to a
maximum time expenditure per period. Furthermore, travel time, stopping time, and local demand
are assumed to be normally distributed random variables; however, the team is not able to change
the selected nodes or routes based on additional information obtained while traversing the route.
The team services each stop locally rather than transporting people or goods to a central location.

The overall procedure is diagrammed in Figure 5. We start by building the network graph
with real-world data as described above, using a standard origin-destination (OD) matrix solver
based on Dijkstra’s algorithm to find pairwise shortest paths, and passing the resulting matrix to
a MATLAB program as a model input. The elements of this matrix are modeled as the means
of normally distributed random variables with a known variance. The program employs a simple
greedy algorithm that selects a demand node to visit one at a time, based on a local maximization,
and then passes the node and its associated parameters (demand and service time, both random
variables subject to variance) to a standard traveling salesperson problem (TSP) genetic algorithm
to solve for the shortest path connecting all selected nodes; this selection process repeats until the
sum of estimated travel times and service times exceeds the time allotment for the period, and
the algorithm returns an ordered list of nodes to visit. This list is passed back into ArcGIS and
visualized as a route with real-world paths (Figure 6).

When the real time version of the algorithm runs, this process is modified by updating the
model inputs at the beginning of each period: the set of candidate nodes is augmented based on
information received over the course of the previous period, and the OD matrix is replaced with a
new one generated with an updated graph and set of nodes.

We assume that local demand Di, travel time cij , and service time Si are normally distributed
random variables with standard deviations estimated as a fraction of the sample means. We assume
this fraction to be 0.1 for real time data and 0.2 for non-real time data, reflecting our assumption
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that real time data provide more reliable information on current conditions than data collected
before the onset of the disaster. We assess model performance by estimating true values for Di, cij ,
and Si from their observed values, repeating this procedure over 50 iterations.

2.3.1 Optimization model

Notation

0 Depot designation

i, j Demand node indices

t Period index

Di Demand at node i

cij Travel time from node i to node j

Si Stopping time at node i; linear function of Di

Tmax Total time available per period

N Set of candidate (unvisited) demand nodes

Nt Set of new candidate nodes in period t, from 4636 data

Vt Set of nodes visited in period t

DVt Total demand at nodes visited in period t

Wi(N) =
Di∑

j∈N cij
, Demand divided by total distance to all other nodes

Wi(Vt) =
Di∑

j∈Vt
cij

, Demand divided by total distance to nodes visited in t

OptRoute(Vt) Optimal ordering of nodes in Vt; output from TSP

T (Vt) Total time spent on route in period t; output from TSP

We begin by localizing the problem and creating a scaled down model with minimal data inputs
to be solved in AMPL, a linear programming solver. The simplified model solves a single-vehicle
problem maximizing demand served within a deadline.

Variables:

Xij 1 if team travels from node i to j, 0 otherwise

Yi 1 if team visits node i, 0 otherwise

Objective function:

Maximize:∑
i

YiDi (1)

Subject to:∑
j

∑
i

Xijcij + YiSi ≤ Tmax (2)

∑
j

Xij =
∑
j

Xji (3)

∑
j

Xij = Yi (4)
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Figure 5: Visual representation of the solution procedure
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Although the AMPL model is able to efficiently solve the basic problem, it is unable to accom-
modate the following intricacies:

• For both the real time and non-real time model, we require a constantly updating model over a
course of time (five days). AMPL would only be able to solve for one day at a time and we would
need to manually update all aspects of the model after each day, i.e., removing nodes visited and
updating with real time OD matrices.

• One motivating factor behind the inclusion of real time data in the model is the likelihood of
reducing variance in demand, stopping time, and travel time. AMPL would require datasets to
be generated ahead of time to be fed into the model. Since we planned on running this simulation
at least 50 times, creating 250 (50 ∗ 5 days) datasets would be highly inefficient.

• In TSP modeling, subtour eliminating constraints are needed to ensure that all nodes are visited
in one single trip with a single starting and ending point. In this model, the constraint that every
node must be visited is relaxed since the objective is based on maximizing demand satisfied in
a limited time, but subtour constraints remain. The number of subtour eliminating constraints
needed is 2n, where n is the number of nodes. Even with only 10 nodes, we would already require
1024 subtour constraints.

Algorithm 1 Master algorithm

Input N from OpenStreetMap building data
Input network dataset from OpenStreetMap
Apply ArcGIS origin-destination algorithm to N to generate OD = [cij ]
Rank nodes by Wi(N)
Set depot: 0 = Wmax(N)
Set variance of Di, Si, cij to 20% of sample means
for t← 1 to 5 do

if realtime then
N ← N ∪Nt and update ranking of nodes by Wi(N)
Rebuild network dataset with new road data
Recalculate OD with new network dataset and candidate nodes N
Set variance of Di, Si, cij to 10% of sample means

end if
Initialize Vt = {0}, T (Vt) = 0
while T (Vt ∪ {Wmax(Vt)}) ≤ Tmax and N 6= ∅ do
Vt ← Vt ∪ {Wmax(Vt)}
N ← N \ {Wmax(Vt)}
Recalculate Wi(Vt) and select new Wmax(Vt)
Apply TSP genetic algorithm to Vt ∪ {Wmax(Vt)}
return T (Vt ∪ {Wmax(Vt)})

end while
return Vt ordered according to TSP and display route in ArcGIS
return DVt

end for

2.3.2 Implementation

To address these needs, we develop a heuristic in MATLAB. Figure 5 is a schematic representation
of the MATLAB procedure. The entire procedure described in the master algorithm is executed
in two distinct sections: ArcGIS is used to prepare spatial data inputs and to run the OD matrix
solver, and MATLAB uses these inputs to execute the algorithm and call the TSP genetic algorithm
as a subroutine. Data preprocessing is accomplished with a variety of tools, including several small
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Figure 6: An example of a recommended route. Map source: OpenStreetMap.

programs written by the OpenStreetMap community to facilitate extraction and manipulation of
OSM data. On a computer with a quad-core 2.6 GHz processor, execution time for both real time
and non-real time models together is approximately 15 minutes.

2.4 Results and analysis

We run the simulation under four different sets of conditions, each with a different set of features
included in the real time component of the simulation. These combinations are summarized in Table
1. In each of the first three simulations, one of the enhancements in the real time model was omitted.
Simulation 4 includes all differences between the two procedures. Each simulation is run over 50
iterations, with resulting boxplots in Figures 7–10.

The current problem formulation assumes that real time demand data is essentially equivalent to
non-real time demand data except that it is subject to lower variance in local demand, travel time,
and stopping time. This assumption does not permit an assessment of the relative merit of new data
sources; because the real time model simply has lower variance and more data points from which to
draw a solution, it generates at least equivalent model performance essentially mechanically. That
said, a comparison of the two models’ output does allow us to examine how much the additional
real time data contribute to solutions.

In all four simulations, there is little performance difference between the models. This is unsur-
prising given the relatively modest number (22) of additional demand nodes in the real time model
and the conservative estimated demand at those nodes. That said, in all cases, the performance of
the real time model relative to the non-real time model improves noticeably after the first period.
The real time model is replenished with new data points after the first period and gains a more
detailed road network as time goes on, which tends to increase the difference in data inputs between
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Figure 7: Simulation 1

the two models with time.

New nodes Map changes Different variance

Simulation 1 X X

Simulation 2 X X

Simulation 3 X X

Simulation 4 X X X

Table 1: Four sets of simulations

2.4.1 Next steps and recommendations

The work presented here is only a preliminary step in the development of a set of deployable relief
routing models and should be regarded as a demonstration of the feasibility of using the data sources
described at an organizational level and a motivation for the work described in the following sections
of this report. Among the most immediate limitations of the approach demonstrated here are as
follows:

• We reduce the problem here to a single mobile team. Expanding the scenario to multiple depots
and teams within this algorithm requires determining stop order using algorithms modeling the
vehicle routing problem rather than the traveling salesman problem.

• The model presented here assumes that all data inputs have already been validated and all
additional information is beneficial. Assessing the validity of crowdsourced information in crisis
settings is a highly active area of research, and determining appropriate methods of filtering data
before sending it to end users (that is, into a routing algorithm such as this one) is a critical
element of any usable tool.

• Several parameters, including the variance of real time and non-real time data and the cost
multipliers for each road type, are essentially arbitrary in the present work and should be replaced
with empirically derived numbers.
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Figure 8: Simulation 2

Figure 9: Simulation 3
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Figure 10: Simulation 4

• We model service time as a linear increasing function of local demand with a normal distribution.
More appropriate estimates of service time depend on the setting.

• Future work should take into account “spoke” traveling where either the full SAR team or a
portion of it must return back to the base node after visiting certain nodes to drop off individuals
requiring medical attention or to replenish supplies.

• The real time data processing workflow here does not incorporate information on non-traversable
roads, which would allow the solver to avoid road segments that are not traversable due to
flooding, debris, damage, and the like. This is a straightforward extension of the network dataset
creation step; assessing the relative usefulness of this inclusion requires adding a realistic penalty
to the non-real time model for designing routes over roads that the team is unable to traverse.

• The current optimization model is updated with new data on a daily basis. To make the model
more reactive to real time data, more frequent updates should be considered.

• Finally, the SAR team itself gathers important information about demand and road conditions.
More detailed models should capture this information in addition to exogenous updates.
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3 Testbed Development

This section describes the process of generating road network datasets ready for routing analysis
using freely available, collaboratively updated spatial data from the OpenStreetMap (OSM) project.
We begin by briefly describing the context and motivation for this work (Section 3.1) and the
particular need for processed routing data for academic research (Section 3.2). We then detail the
procedure used for generating the network data employed in the pilot project described in Section
2 (Section 3.3). These test case data are available from the Humanitarian and Non-Profit Logistics
server, ftp://curie.iems.northwestern.edu. Due to privacy considerations, only road network
data, not geocoded text messages from the 4636 project, are part of this data release.

3.1 Current and future landscape of data streams

The success of creating field-appropriate dynamic stochastic routing models for humanitarian logis-
tics and transport is tightly related to the information flows and data that act as inputs into the
models. New information streams (e.g., text messages, Twitter, online mapping), often created by
newer technologies and social media, can create a real-time picture of disaster and humanitarian
environments. The processes required to filter, structure, and make sense of this large body of
information are changing to match these new streams.

The datasets themselves present new challenges. New information streams are generated by var-
ious groups (e.g., affected communities, organizations, satellite providers) and in different formats
(e.g., SMS, Twitter, image files). These disparate pieces of information, often generated simulta-
neously, are processed by individuals and groups (e.g., specialists, volunteer groups, computers).
As each new disaster unfolds, datasets change in structure, size, and language. Nonetheless within
these information streams exist important road data, requests for food and services, and, in some
settings, time-critical requests for SAR. Research to date reflects the growing interest in these new
humanitarian datasets, and practitioners themselves bring light to the potential impact of these
new information streams on humanitarian response. A recent report by the Harvard Humanitar-
ian Initiative [14], coauthored by PI Chan, presents a broad overview of the evolving landscape,
highlighting new volunteer-generated online maps that influence operational response, and also pre-
senting challenges and potential impact on future emergencies.

Mission 4636 and Ushahidi Haiti (see Section 2) pioneered approaches to systematizing the use
of SMS messages generated by crisis-affected communities using human translators and manual
information processing. Collaboration between those groups and first responders showed a glimpse
of the potential impact of using crowdsourced information to assist disaster-affected individuals
[21, 24]. Recently published research shows the increasing academic attention to these large swaths
of information and how this information can be used for various humanitarian response activities
[23, 2, 31, 4, 29].

3.2 From raw data to routing data

Despite this increased attention, academic researchers in many fields face significant challenges in
analyzing much of the data already in existence from prior disasters. This is particularly true
for researchers interested in routing, an application requiring highly specialized data types and a
large amount of pre-processing. While routing models can be tested on simulated data representing a
stylized picture of the problem scenario, it is much more desirable to assess the salient characteristics
of the disaster response setting using real-world data; furthermore, routing models must be applied
to real data if they are to be useful, and this requires designing workflows to accommodate the kinds
of data streams commonly seen in disaster settings.

In general, data generated during disasters are most immediately available either in raw form
or as consumption streams targeted toward particular kinds of use. For example, to pick a simple

17

ftp://curie.iems.northwestern.edu


case, data on road blockages may be available either as a set of tagged points in the OpenStreetMap
master database or as a visualization layer that displays those points on a digital basemap in a web
browser. This map is the most immediately useful way for end users to interpret the data.

Although (in this case) free and open, neither of these forms make this useful information available
for routing applications without additional processing and decision-making. There are additional
steps requiring both technical and conceptual work. On the conceptual side, questions for this
simple road blockage dataset include: How were these data points collected, and how precisely are
they located? How many different types of road obstruction (sinkhole, landslide, debris, etc.) are
recorded and how should we decide how to modify the characteristics of a road segment in our
network database based on each type of reported blockage–for example, should we increase the cost
of traversing the segment, or perhaps mark the entire segment as non-traversable, or only traversable
by some kinds of vehicles or in one direction? The answers chosen for these conceptual questions
must then be translated into rapidly deployable technical procedures for using the raw data to
generate a database ready for solving routing problems.

3.3 Road network data in real time: Haiti 2010

The project described in Section 2 centers on incorporating real time information on road conditions
and demand into vehicle routing algorithms. The project uses data from OpenStreetMap (OSM) and
Mission 4636 as inputs into vehicle routing models that are modified specifically to accommodate
these real-time data streams.

The datasets described below are used to generate an origin-destination (OD) matrix, in which
each matrix element is the cost of traveling along the road network from an origin to a destination,
where travel cost in this case is estimated travel time. OSM is the sole source of data used to
construct the road network and the weights used to estimate travel time.

3.3.1 Raw data collection

The first step is to collect the raw OSM data. Archived OSM data are available at http://planet.
osm.org/ in the form of snapshots of the entire database at a point in time, called planetfiles, and
additional files describing changes made to the database over a given span of time, called changesets.
We clip the study area (a bounding polygon of Haiti) from the 1/13/2010 planetfile and download
all daily changesets from 1/13/2010 to 1/31/2010, using a script to clip each changeset to the study
area, apply it to the previous day’s .osm file, and save the new .osm. This process gives us daily
OSM extracts from immediately after the earthquake to the end of January. (These extracts are
available at ftp://curie.iems.northwestern.edu/haiti_OSM.)

There are two major potential methods for using these daily extracts to generate routable net-
works: ArcGIS, a commercial geographic information system, or PostGIS, a spatial extension of
the open source PostgreSQL relational database management system. Each choice has advantages:
ArcGIS enjoys industry standard status and is more easily interoperable with the data formats most
commonly used in the humanitarian field, while PostgreSQL, in addition to being freely available
and open source, supports OSM’s data model based on key-value pairs, making interaction with
OSM potentially more efficient. In this project, we use ArcGIS, mainly due to user consideration:
porting the process to PostgreSQL is generally straightforward, but wrapping the resulting network
data in a user-friendly and flexible system is an undertaking for future work.

We convert each .osm in its entirety to an Esri geodatabase using ArcGIS Editor for Open-
StreetMap 1.1. While this is not the fastest approach and would not be suitable for real time
deployment, it involves the fewest data processing steps during which information could be lost.
A recently released update to this interoperability software may make this data translation step
significantly faster in production environments.
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3.3.2 Creating a network

Network Structure. Before creating a network dataset, we conduct some exploratory data analysis
to characterize the data, beginning with basic elements of network topology. We note that, since road
segment elements in OSM do not necessarily begin and end at intersections, the network requires
vertex connectivity rather than endpoint connectivity, and that the network must be built with
global turns (i.e., assuming turns in any direction are possible at each intersection) rather than a
turn source. While the absence of robust data on turn rules at intersections is a potential issue for
many routing applications, it is likely to be a minor concern in post-earthquake Haiti.

Network datasets must also keep track of roads that pass above and below each other without
intersecting. This is commonly accomplished with elevation fields. For OSM Haiti data, this is not
an option due to missing data. Nor do the bridge and layer tags give consistent and reliable elevation
information suitable for routing in this context; while we build the networks without taking grade
separation into account on the grounds that there are relatively few grade-separated road segments
in the study region, this is not in general an acceptable solution. This limitation is still common in
many geographic areas, but as OSM’s database grows and users continue to improve tags used for
routing, elevation data will become more usable for more areas of the globe.

Road segments in OSM have a non-nullable (mandatory) tag, highway, which records road type.
We delete segments with highway values indicating that they are not traversable by vehicles, includ-
ing “path,” “footway,” and “pedestrian.”

The final steps in characterizing road networks are to define the time cost variable and to deter-
mine whether to include barriers. The number of tags recording road barriers (including blockages
due to debris, damage to roadbed, etc.) grew precipitously over the study period, although the
majority were recorded using the “impassable→yes” tag. For the current work, we elect not to use
barriers due to modeling considerations (see Section 2.2.4), although it is straightforward to add
them back to the completed network datasets.

Travel Cost. Besides network structure, the other fundamental component of a network dataset
for our purposes is travel cost, the cost (in our case, travel time) incurred by a vehicle traversing a
road segment. Travel times can be estimated with increasing precision as data availability increases,
starting with rough estimates based on road class, to estimates based on historical traffic patterns
and logged travel speeds recorded by GPS devices, to real-time data collection from GPS devices
such as mobile phones. While fine-grained data of the latter types are frequently used in commercial
settings and are being innovated and tested in open data settings, for our study setting, it would
only have been possible to estimate travel times based on time-invariant road characteristics.

To characterize the cost of traversing a road segment, we place segments into categories based
solely on highway tag values. We create a new road class variable and map highway tag values
“primary,” “primary link,” and “motorway” to 1; “secondary” and “secondary link” to 2; “tertiary,”
“residential,” and “unclassified” to 3; and all others to 4. We then define time cost along a segment
as the length of the segment multiplied by a parameter depending on road class, ranging from 1
for road class 1 to 1.6 for road class 4. The parameters used are essentially arbitrary and serve
as a stand-in for empirically determined parameters derived from the literature or from ground
experience; in both cases, the relative (and absolute) travel costs associated with different road
types are likely to vary by locality. Since these parameters simply scale travel cost based on shape
length, they are functionally unitless and have only relative meaning. We consider our travel cost
definition a distinctly second-best option, but it does have the desired effect of prioritizing travel
along more robust roads. Users may calculate their own travel cost variables on this set of network
datasets.

With the above approximations and compromises, it is possible to generate a series of network
datasets with surprisingly sound results. In the project described in Section 2, the team uses these
network datasets to calculate OD matrices of points from processed 4636 data, which are in turn
used as inputs for routing algorithms implemented in MATLAB.
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4 Model

This section presents the mathematical model of the search and rescue operation problem. Section
4.1 presents the problem, emphasizing its specific characteristics and related literature. The prelim-
inary mathematical models are presented in Section 4.2, and their analysis is discussed in Section
4.3. In Section 4.4 we detail our ongoing and planned work, including solution approaches for the
preliminary models and other models we plan to develop.

4.1 Problem Overview R1

T2

T1

0 R3

R2

T3

Figure 11: Example of Adap-
tive Orienteering Problem net-
work with depot node (0), transi-
tion nodes (T1, T2, T3) and reward
nodes (R1, R2, R3).

Consider the setting of search and rescue (SAR) operations in Port-
au-Prince following the 2010 earthquake. Numerous SAR teams
arrive in Haiti from around the world to assist in rescuing survivors.
To facilitate this operation, the affected area is divided into regions,
each assigned to an SAR team. The goal of each team is to search
collapsed structures within the area to rescue as many survivors
as possible within a specified deadline (usually 48-72 hours in such
settings). Each SAR team must commit to a set of structures to
search and communicate this information to other teams at the be-
ginning of the time horizon. This ensures coverage of areas by the
multi-team SAR operation and avoids redundancy and inefficiency.

From the perspective of a single team, the decision problem can be formalized as an adaptive
orienteering problem as follows. Given is a network G = (N,A) of nodes i ∈ N(see Figure 11)
with a specified depot node where a specific SAR team is housed, i = 0, a subset of reward nodes,
i ∈ NR, (e.g., collapsed buildings with potential survivors) and a set of intermediate/transition
nodes, i ∈ NT , (e.g., corresponding to road intersections) that define paths among the depot and
reward nodes, where NR ∪ NT ∪ {0} = N . The set of arcs is denoted by A. The problem models
operations of a single team with three sets of decisions: (1) which reward nodes to commit to
visit, (2) the order in which to visit these reward nodes, and (3) the path to follow between each
consecutive pair of reward nodes, defined by transition nodes. Other problem characteristics are:

Reward node commitment. The team commits to a set of reward nodes at the beginning of
the planning horizon, and must visit those nodes and cannot visit other reward nodes. This problem
characteristic directly impacts the available path choices.
This assumption is necessary in practice to ensure there are no gaps or overlaps in service among
the teams.

Deadline. There is a deadline, D, for collecting reward from visiting a node; each reward node
i ∈ NR is associated with a reward value ri received for visiting before the deadline and a penalty
ei for arriving past the deadline. The problem objective is to maximize the expected profit, equal
to the collected reward minus the incurred penalties.
In SAR operations, finding a survivor after the initial 48 hours is highly unlikely. If a team commits
to a building to search but does not arrive on time, there is a penalty for not giving another team
an opportunity to rescue people at that location.

Stochastic Travel Times. Travel times on the network arcs are stochastic and are realized
after a team traverses that arc. Once the travel time is realized, that realization remains fixed for
the remainder of the time horizon. This is an important fact since one might need to traverse an arc
multiple times during the operation. In the preliminary model presented here, we assume there are
no exogenous information updates about the network during the problem time horizon. In addition,
travel times on the arcs are assumed to be independent of each other. These assumptions are relaxed
in ongoing work described in Section 4.4.
Following an earthquake and other disasters, little information about the transportation infrastructure
is known. One has to travel through the network to learn the network.
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A large class of humanitarian logistics problems falls within a class of previously studied problems
in optimization called the orienteering problem (OP). The orienteering problem has been extensively
studied in the existing literature and is closely related to the Selective Traveling Salesman Problem
(TSP) and the TSP with Profits. The overview of the orienteering problem and related variant
problems can be found in review papers [10, 30]. The objective of the OP is to visit a subset of
available customers within a specified deadline in order to maximize the total reward we collect from
visiting the customers. To account for the transportation network and infrastructure uncertainty
encountered in humanitarian settings we focus on a variation of the orienteering problem
with stochastic travel times. These problems are less studied variations of the OP. Ilhan et
al. [17] study the OP with stochastic profits and deterministic travel times, focusing on selecting
a subset of demand nodes in order to maximize the probability of collecting reward above a given
threshold before a deadline. Settings of the orienteering problem studied by Campbell et al. [3] are
most closely related to our proposed work. They assume stochastic travel and service times, with
deterministic rewards and deterministic penalty. They focus on finding the a priori path (subset
of customers and visiting order) that maximizes the expected profit. In the proposed research we
extend the work by Campbell et al. [3] to include path finding components of the problem and
evaluate adaptive, as opposed to a priori, solutions. In the most recent work, Gupta et al. [12]
discuss approximation algorithms for the stochastic orienteering problem and propose an a priori
solution to approximate the optimal adaptive policy with a guaranteed lower bound on the worst
performance. While we are not able to find any work on adaptive OP models, there is a significant
body of literature on adaptive versions of related problems: shortest path, traveling salesman, vehicle
routing, and knapsack problems, which we discuss next.

In addition to stochastic travel times, we introduce a path finding component to the
problem by defining a subset of intermediate nodes without an associated reward that represents
alternative paths among reward nodes and the depot. Hall [13] was the first to discuss the shortest
path problem with stochastic and time-dependent travel times, where the arc travel times are realized
after traversal, and the next route choice is conditional on the location and time of arrival at that
node. Hall shows that the routing policies are better than a priori paths in the stochastic and time-
dependent network. Dynamic programming approaches are used to find those optimal polices. The
papers that followed propose more efficient algorithms to solve variations of the problem. Miller-
Hooks [19] studies the adaptive least expected time paths in the stochastic time-varying network by
generating hyperpaths for different departure times. In the following paper, Miller-Hooks and Yang
[20] studied a problem where real-time information is observed within a small neighborhood of the
vehicle. An important conclusion emerges from their analysis: knowing only a small neighborhood
of information yields decisions that are equivalent to decisions made with wide information. It is
important to emphasize that inherent dependence of the paths between two distinct pairs of reward
nodes in our problem prevents us from direct application of the algorithms developed for adaptive
shortest path problems. It may be more beneficial to find a path that puts us into a better position
for visiting additional nodes in the future rather than the shortest path between two reward nodes.

Finally, we allow our model to react to the dynamic nature of uncertainty and infor-
mation updates by developing adaptive models and solving for an optimal policy, as opposed to
an a priori path. Thus, the decisions regarding customer (reward node) sequence and path choice
affect the information gathered and require exploration versus exploitation analysis. Adaptive and
reoptimization models for TSP and vehicle routing problem (VRP) have been studied in the litera-
ture by integrating model reaction with updated information. The probabilistic traveling salesman
problem is introduced by Jaillet [18], where some customers can be absent with a known probability
distribution. An a priori tour is built that visits all the customers, and the absent customers are
skipped, while continuing along the chosen tour. Secomandi and Margot [26] study the VRP with
stochastic demand via reoptimization approaches, where the tour is reoptimized after the stochastic
demand is realized from visiting a customer. Tang and Miller-Hooks [28] study the selective TSP
with stochastic service and travel times. In their problem, the authors use a chance constraint model
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to find an a priori tour to visit a subset of customers that maximizes expected profit.
We present adaptive path planning methods to take advantage of dynamically up-

dated data, combining OP and optimal path finding into a single model, and propose
to study a new class of problems that we call the Adaptive Orienteering Problem with
Stochastic Travel Times (AOPST).

4.2 Optimization Model

The focus of the proposed work is integration of continuously updated data into humanitarian relief
logistics models. The development of adaptive optimization models will allow us to achieve this goal,
as well as to assess the value of available information. However, just like the dynamic nature of a
disaster itself, the sources and types of data that are available at one region or time period versus the
next one might differ. In addition, it is hard to anticipate the level of adaptivity and changes in relief
operations that would be feasible to implement in various settings. Thus, we propose to study a
variety of adaptive techniques, degrees of operational flexibility, and levels of data updates available
on the ground. Initially, we introduce two levels of adaptive models for AOPST, differentiated by the
subset of decisions that have to be made at the beginning of the planning horizon and the decisions
that can be dynamically adapted to the realized information.

Level 1 model (L1). The adaptive orienteering problem can change the paths between consecutive
reward nodes, maintaining the fixed order and subset of customers.

Level 2 model (L2). The adaptive OP can change the order of visiting reward nodes and the
paths between those nodes, but maintains the selected subset.

In addition, a level 3 model that can update all its decisions (subset of customers, order, and paths)
at any time during the operation is introduced later as a benchmark model.

First, we introduce additional notation for the formulations of AOPST. Let Xij denote stochastic
travel time on arc (i, j), which is assumed to be discrete, where mij is the finite number of realizations
of Xij . Then xij is the realized travel time on arc (i, j), and H corresponds to a set of previously
traversed arcs and their realized travel times, e.g., H = {(i1, j1, xi1j1), (i2, j2, xi2j2), ...}.

Our problem decomposes into a two stage model. The first stage (master problem) decisions are
to select a subset of reward nodes with the highest expected profit; note this subset must be ordered
in the Level 1 model. Then, for a given subset of reward nodes, the corresponding second stage
(subproblem) finds the optimal routing policy between the reward nodes. As we allow our second
stage model to dynamically adjust its path when more information about the network is learned, we
model the second stage as a dynamic programming (DP) problem.
Master Problem
The master problem can be described as an optimization problem,

(L1) : max U(y1) (L2) : max U(y2)
s.t y1 ⊆ordered NR s.t y2 ⊆ NR.

In the optimization models above, y1 represents an ordered subset of reward nodes, while y2 is an
unordered subset. Then U(yi) corresponds to a function of yi for i = 1, 2, whose value represents the
optimal expected profit achieved from visiting all the nodes in yi. Notation y1 ⊆ordered NR denotes
the elements in ordered set y1 corresponding to a subset of NR. For the level 2 model, we simply
have y2 ⊆ NR, since the order can be selected and changed in the second stage of the problem, based
on travel time realizations. To compute the value of U(yi) we solve the DP subproblem.
DP Formulation of Subproblem
Given a set of reward nodes from the master problem, we develop a dynamic programming model
to evaluate the expected profit. Our DP model makes sequential decisions on which node (be it
transition or reward node) to travel to next. Note that in both models we are restricted to only
visiting the selected reward nodes. Furthermore, in (L1) we also must follow the specified order of
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visiting those reward nodes. This, in turn, limits the set of feasible decisions. The stochastic travel
time on each arc is realized after traversal. Then, based on the observed information, we choose
the path that has a higher probability of visiting the remaining reward nodes before the deadline.
Recall that all the reward nodes selected in the master problem have to be visited. Unlike the a
priori orienteering problem, the optimal routing policy in AOPST provides a set of paths between
consecutive nodes, i.e., an optimal policy, rather than a single path. The details of the DP model
follow.

Given an (ordered, for (L1)) subset of committed reward nodes, NC , where NC ⊆ NR, we develop
a dynamic programming model to calculate the optimal visiting policy and the corresponding optimal
expected profit. Assuming |NC | = k, we rewrite NC = (n1, n2, ..., nk).
DP state: s = (i, t,H, I), keeps track of the current location (i ∈ NT ∪NC) and current time (t ≥ 0),
as well as the set of realized arc travel times previously traversed (H) and the set of already visited
reward nodes (I).
DP action: a = j, corresponds to the decision to move next to node j ∈ A(s), where given the
current state s = (i, t,H, I), the action space A(s) is

A(L1)(s) =

{
j ∈ NT ∪|I|+1

i=1 ni for I ⊂ NC

∅ for I = NC
, A(L2)(s) =

{
j ∈ NT ∪NC for I ⊂ NC

∅ for I = NC
.

Observe that in the case of the (L1) model, a reward node becomes equivalent to a transition node
once it is visited. Also note that the sets A(s) are different for the two models since we relax the
visiting order of the reward nodes in (L2).
DP state transition: g(s, a), is the state transition function that returns a state to which the sys-
tem transitions when action a is chosen in state s. For state s = (i, t,H, I), when action a = j is
chosen, the model transitions to state s′k = (j, t + xk

ij , H
′
k, I

′) with probability P (Xij = xk
ij |H) for

k = 1, ...,mij , where

H ′
k =

{
H for (i, j) ∈ H
H ∪ {(i, j, xk

ij} for (i, j) /∈ H
and I ′ =

{
I for j /∈ NC \ I
I ∪ {j} for j ∈ NC \ I

.

Note that if the arc (i, j) has been previously traversed and element (i, j, xk
ij) ∈ H for some k ∈

(1, ...,mij), then P (Xij = xk
ij |H) = 1 and P (Xij = xk′

ij |H) = 0 for k′ 6= k. Otherwise, P (Xij =

xk
ij |H) = P (Xij = xk

ij),∀k ∈ (1, ...,mij) (due to the preliminary independence assumption).
DP action cost: R(s, a). For state s = (i, t,H, I), when action a = j is chosen, R(s, a) denotes the
expected profit gained from traveling from node i to node j, starting at time t, given travel time
information H and set of already visited nodes I.
R(i, t,H, I, j) = (rj + ej)P (Xij ≤ D − t|H)− ej for j ∈ N \ I, and 0 otherwise.
Recursive equation
Let V (s) denote the maximum expected reward the system could obtain, starting from the current
state s = (i, t,H, I) until the end of the problem horizon. The following DP recursive equation
evaluates the value of V (s),

V (s) = maxa∈A(s)

{
R(s, a) +

mij∑
k=1

P (Xij = xk
ij |H)V (g(s, a))

}
. (5)

Boundary conditions: V (i, t,H,NC) = 0, ∀i, t,H.
Given the (ordered) subset NC , we find the optimal policy to visiting the reward nodes in NC and
the corresponding optimal expected profit by recursively solving the equation (5).
When we find the optimal value for V (s0) with s0 = ({0}, 0, ∅, ∅), U(NC) = V (s0).
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4.3 Analysis of Models

4.3.1 Path Planning Component

Unlike the OP variations studied in the literature (where every node is a reward node and the
network is a complete graph), our network is not complete and a significant number of nodes are
transition nodes that do not have associated reward. As a result, one chooses the optimal path
between each pair of committed reward nodes. It is important to highlight the level of complexity
this brings to the problem. In the traditional OP, the travel times between each pair of reward nodes
are independent of each other, static, and independent of the reward nodes we have visited so far.
In AOPST, those travel times are not independent of each other, nor of the set of visited
nodes since we can traverse the same arcs multiple times, thus taking advantage of the information
learned about a given arc travel time the first time it has been traversed. As a result, the value
of each potential path between a pair of reward nodes is two-fold: (1) earlier arrival to a reward
node delivers greater expected profit, and (2) realization of stochastic travel times for the traversed
arcs puts us into a better position to make the following sequence of routing decisions. These two
benefits are often conflicted, and our model has to find the appropriate tradeoff between the two.
This relates to a widely studied analysis of exploration versus exploitation in the reinforcement
learning literature (see [32] and [1] for examples in path finding settings and [25] for more general
discussion).

4.3.2 Challenges of the Two Stage Model

Recall that a subset of our decisions (set of committed reward nodes to visit, as well as visiting
order for (L1)) is made at the beginning of the trip and stays fixed for the duration of the problem
horizon, while the remaining decisions are dynamically updated enroute when more information
about the network is gathered. This characteristic of the problem leads to a two stage model: (1)
master problem and (2) DP subproblem.

The master problem is a variation of the knapsack problem, where we choose a subset of items
to maximize the total reward. A number of adaptive stochastic knapsack problem variations have
been studied in the literature, with random size or reward of the items. The adaptive models se-
quentially select the items to add to the knapsack, while uncertainty is realized after the item is
inserted. Ilhan et al. [16] study the adaptive stochastic knapsack problem with deterministic size
and stochastic rewards. Their problem objective is to find a sequential inserting policy to maximize
the probability of the reward exceeding some threshold value without violating the capacity con-
straint. Dean et al. [6] study the adaptive stochastic knapsack problem with items of deterministic
reward and stochastic size. Their goal is to maximize expected value while fitting all the items in
the knapsack. The authors demonstrate the benefit of the adaptive policy and provide an approx-
imate adaptive policy. In our problem, we also assume deterministic reward; however, the arrival
time to a reward node depends on the previous nodes (i.e., items) visited. This dependency adds
complexity beyond the adaptive stochastic knapsack problem, which is shown to be PSPACE-hard
[6]. Furthermore, unlike the knapsack problem, the AOPST does not have the additive property of
the value each selected item contributes, and the value of each selected item depends on what other
items have been selected, and in (L1), the order of adding items further impacts each item’s value.

The master problem models are computationally demanding, due to the fact that the total value
of any given subset of reward nodes selected does not satisfy the properties currently exploited in
the existing literature. Thus, if we want to add one more reward node to a currently selected subset,
to evaluate the additional value of that node one has to resolve the dynamic programming
subproblem from scratch for this new subset of reward nodes. This pure enumeration approach
is extremely inefficient. To overcome this challenge we propose to study the underlying structure
and properties of our problem to guide the master problem to an optimal (or near optimal) solution.

Furthermore, the DP subproblem to evaluate each feasible solution to the master problem is
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negatively impacted by the curse of dimensionality [25]. Thus, DP computational time grows expo-
nentially with the size of the network, deadline value and discrimination of travel time distribution
(since a longer deadline allows us to consider larger set of reward nodes to commit to). In Section
4.4 we propose a solution approach to manage the computational challenges of our models.

4.4 Ongoing Work

Our current work on solution approaches for the preliminary models described above is discussed
in Section 4.4.1. We will build on these solution approaches in the development of new routing
models that integrate exogenous information sources (Section 5.1) and ensure compatibility with
characteristics of the data sources (Section 5.2). These new models will be driven by outcomes of
ongoing work focused on the data aspect of our project (Section 5.3).

4.4.1 Solution Approach for Proposed Models

Due to the lack of structure of the master problem, pure enumeration of feasible solutions might be
required to find the optimal solution. Furthermore, to evaluate each feasible solution one needs to
solve a computationally demanding dynamic programming model. Note that if we assume |NR| = n,
there are O(2nn!) number of possible subsets to be considered in (L1), and O(2n) in (L2). We
propose a two-stage search-based heuristic to find a near optimal solution. The first stage is focused
on analyzing the structure and properties of the DP subproblem to identify a promising neighborhood
of feasible solutions to the master problem. Then, in the second stage we perform local search of
the neighborhood to find a local optimal solution. A number of neighborhoods might be identified
and explored to improve performance of the heuristic.

Stage 1. Subproblem Properties
Dynamic programming models are often affected by the curse of dimensionality; however, there

are a number of techniques to reduce computational demand. Analysis of the problem structure al-
lows us to identify the properties of the problems and their optimal solutions, subsequently delivering
necessary conditions for optimality, state dominance and other rules that decrease the computation
demand by pruning the decision and/or state space. PI Dolinskaya has successfully employed these
tools on similar problems of real-time dynamic vessel navigation [9, 7, 8].

To enhance the implementation speed of the AOPST models presented above, we state a number
of preliminary results. (We present Propositions 1 and 3 without proofs, as these are straightforward
results.) Proposition 1 allows us to significantly reduce the number of the DP states considered in
the model, since this state dominance restricts our algorithm from considering the paths that circle
back and forth between nodes. Note that this property is specific to the path-planning component
of our model that allows to traverse the same network arcs multiple times.

Proposition 1. V (i, t1, H, I) ≥ V (i, t2, H, I), ∀t2 > t1, i,H, I.

Proposition 2.

P (Xij(h) ≤ D − t|h) ≥ P (Xij(h) + Xjm(h) ≤ D − t|h) ∀t > 0, (i, j) ∈ A, (j,m) ∈ A, h.

Proof: Since we assume non-negative arc travel times, we know Xjm(h) ≥ 0, ∀(j,m) ∈ A, h. Then
it is easy to show that P (Xij(h) ≤ D − t|h) ≥ P (Xij(h) ≤ D − t − Xjm(h)|h), ∀t > 0, (i, j) ∈
A, (j,m) ∈ A, h. 2

This proposition demonstrate that at the system state (i, t, h, I), the probability to arrive to node
j from node i at time t with travel time information h is always at least as large as the probability
to arrive to node m by the deadline from node i by passing node j with the same set of real time
information. While we do not apply this proposition directly during implementation, it leads to
further propositions presented below.
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The following propositions do not apply to all the adaptivity models, but rather just a subset of
them.

Proposition 3. V (i, t,H, I) = −
∑

k∈N\I ek, ∀t ≥ D, i,H,N , I ⊂ N .

Proposition 3 prevents further exploration of the paths once the current time is past the deadline
and, in turn, prunes a set of states to be evaluated. Thus, without finding the exact path to visiting
each of the remaining reward nodes, we can compute the value function V (i, t,H, I).

The left-hand side of Proposition 4 is part of equation (5), and as a result, the proposition
provides an upper bound estimate of the expected future reward we could collect starting at the
current state (i, t,H, I) when action j is chosen. This upper bound estimate might allow us to prune
the action j, without reaching the terminal state of the problem and computing the exact value of
the reward.

Proposition 4.

mij∑
k=1

P (Xij = xk
ij |H) · V (j, t + xk

ij , H
′
k, I

′)} ≤
∑

n∈N\I′

[(rn + en)P (Xij ≤ D − t|H)− en].

Proof: Recall, g(i, t,H, I, j) = (j, t + xk
ij , H

′
k, I

′) = s′k with probability P (Xij = xk
ij |H) for k =

1, ...,mij . Then, when at node j we chose the next node to visit m ∈ N , we can bound the
probability of arriving to m before the deadline as

P (t + xk
ij + Xjm ≤ D|H ′

k) ≤ 1(t + xk
ij ≤ D),∀t > 0, (j,m) ∈ A.

Then, the maximum profit collected starting at state s′ is bound by the maximum reward minus
the penalty one collects from all the remaining reward nodes, N \ I ′. That is,

V (j, t + xk
ij , H

′
k, I

′) ≤
∑

n∈N\I′
k
[(rn + en)1(t + xk

ij ≤ D)− en].

The above expression is true for each realization of xk
ij with probability P (Xij = xk

ij |H) and we
calculate the expectation of those values:

mij∑
k=1

P (Xij = xk
ij |H) · V (s′)} ≤

mij∑
k=1

P (Xij = xk
ij |H) ·

[ ∑
n∈N\I′

[(rn + en)1(xk
ij ≤ D − t)− en]

] .

Exchange of the summation in the right side results in the desired statement. 2

We assume the system state (j, t + xk
ij , h

′
k, I

′) transits from (i, t, h, I) by action j with state

transition relationship h′
k = h ∪ {i, j, xk

ij}, if (i, j, xk
ij) /∈ h. I ′k = I ∪ {j}, if j ∈ N and j /∈ I,

otherwise, I ′k = I.
In the subproblem of level 1 and level 2 model, given the pre-committed subset of reward nodes N .
At system state (j, t + xk

ij , h
′
k, I

′
k), there are still N \ I ′k reward nodes left to visit. Starting from

node j at time t + xk
ij , assuming non-negative travel times among all the arcs, we could have

1(t + xk
ij ≤ D) ≥ P (t + xk

ij + Xjm(h′
k) ≤ D),∀t > 0, (j,m) ∈ A

Since starting from any node m, at time t+xk
ij+Xjm(h′

k), the probability of visiting any of the reward

nodes will be smaller than 1(t + xk
ij ≤ D). Based on this argument, we could say 1(t + xk

ij ≤ D)
is an upper bound probabilities of visiting the reward nodes by deadline for all the following states
starting from the system state (j, t+xk

ij , h
′
k, I

′
k). The value function V (j, t+xk

ij , h
′
k, I

′
k) represent the

optimal expected return the system could achieve starting from the current state (j, t + xk
ij , h

′
k, I

′
k)

to end of the problem. Since there only left |N \ I ′k| number of reward nodes, if we calculate the
expected reward of each of them by the upper bound visiting probabilities, the summation of those
expectations will give the upper bound for the value function, which is

V (j, t + xk
ij , h

′
k, I

′
k) ≤

∑
n∈N\I′

k

[(rn + en)1(t + xk
ij ≤ D)− en].
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This expression is true for each realization of xk
ij with probability P (Xij(h) = xk

ij), we further
calculate the expectation of those values as follows:

p(Xij(h))∑
k=1

P (Xij(h) = xk
ij)·V (j, t+xk

ij , h
′
k, I

′
k)} ≤

p(Xij(h))∑
k=1

P (Xij(h) = xk
ij)·
[ ∑
n∈N\I′

k

[(rn+en)1(xk
ij ≤ D−t)−en]

]
.

After we exchange the summation in the right side of the inequality, we have

p(Xij(h))∑
k=1

P (Xij(h) = xk
ij) · V (j, t + xk

ij , h
′
k, I

′
k)} ≤

∑
n∈N\I′

k

[(rn + en)P (Xij(h) ≤ D − t)− en]. 2

Further properties will be established in the course of the proposed project. For example, multi-
level dominance properties that capture the two-fold value of a path between a pair of reward nodes
(quick arrival versus gathered information) can help us eliminate some paths between reward nodes
or a subset of transition nodes from consideration. The combination of OP and path planning into
a single model presents unique research challenges and opportunities we plan to explore in-depth.
Approximate Values
Despite the need for evaluating the value of a selected subset of reward nodes, we aim to develop
bounds on the added value of an extra node to an existing subset; e.g., follow the same path
as before, and then add the best path we could follow to the newly added node. This will provide a
lower bound on the value of the new set. Further study of the DP subproblem can deliver heuristics
for efficiently searching the space of y before identifying a more promising neighborhood to explore
more carefully.

Stage 2. Local Search
The first stage of the algorithm delivers an approximate solution or a promising solution neigh-

borhood to the problem. In the second stage, we perform local search to improve this solution.
Recall that a feasible solution to our problem is an (ordered) subset of reward nodes. To perform
a local search we will explore the benefit of techniques such as deletion, addition, or substitution
of the nodes in our subset. Some of the properties established for Stage 1 will also be beneficial in
the local search stage of our algorithm, serving as guiding rules toward a faster convergence of the
algorithm.

It is important to note that while Campbell et al.’s work [3] studied OP with stochastic travel and
service times, their optimization problem is indeed a deterministic problem, since they only consider
the a priori solution optimizing the expected value. Their neighborhood of the feasible solution is
build by resequencing the route, replacing a customer on the route with the one not on the route,
adding a new customer and deleting a customer. Due to independency of customers’ sequencing,
this neighborhood could be easily solved without resolving the problem. However, the dependency
of the traveling times among different reward nodes of our models prevents us from directly applying
their techniques to search the neighborhood of the feasible solution.

Model Evaluation
We evaluate the proposed models to answer the following problems.
(1) Comparison of performance and the computational demand of (L1) and (L2) models.
(2) Testing of proposed models versus an a priori benchmark policy that does not allow second
stage dynamic update of the path. Since an a priori solution neglects to capture dynamically up-
dated information, this comparison will allow us to assess the value of such real-time information.
This will also allow us to asses the value of transition nodes, and how solution value relates to the
number of such nodes in the network.
(3) Analysis of the Level 3 fully adaptive benchmark model that dynamically selects the
subset of reward nodes to visit, their visiting order, and paths serves as a bound on the best case
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performance of SAR teams. This model (omitted here in the interest of space) does not have a first
stage, and the entire model is composed of a single DP formulation, similar to (L1) and (L2), except
that the action space is not restricted to a preselected subset (and order, for (L1)) of reward nodes.
That is, we do not commit to a set of reward nodes at the beginning.
In practice, implementation of the Level 3 model would require ongoing coordination between SAR
teams operating in the area, which is impractical or infeasible in most settings. However, using such
a model as a benchmark is of benefit to practitioners considering investing into real-time communi-
cation and coordination technology in the hopes of saving more lives.

In the model evaluation and comparisons presented above, we focus on three metrics and the
tradeoff between them: (1) ease of solution and computational demand, (2) expected profit
collected, which translates to expected number of lives saved, and (3) robustness of models
to data reliability. Our preliminary numerical results confirm that models with a greater level of
adaptivity deliver great expected profit. More importantly, we also observe that different models
have different subsets and order of reward nodes they choose to visit. More comprehensive numerical
studies will be possible with improved solution methods.
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5 Future Work

5.1 Exogenous information updates

The AOPST models (see Section 4) capture dynamically updated information about the network
and can react to this new information. However, all the updates come from the SAR team actually
traversing the network arcs. Our preliminary work establishes that there is a significant benefit to
integrating exogenous information sources such as the ones discussed in Section 2. Future work on
this project will focus on building new adaptive routing models capturing the information from the
data sources identified as most promising as a result of our ongoing work. Unlike (L1) and (L2)
models, routing decisions have little or no effect on the data updates coming from the outside sources;
delaying decisions is the predominant (and in some settings the only) technique for “gathering”
mode information. As a result, our transportation network explicitly becomes time-dependent,
where travel time and reward node locations are functions of time. We will build on our prior path-
planning in dynamic environment work [8] to efficiently handle time-dependency of the resulting
models.

5.2 Model - data compatibility

Our ongoing analysis of emerging data sources in SAR and other humanitarian operations will be
integrated with the developed routing models. In addition, the data characteristics will guide the
direction and specifics of these models. More specifically, we will identify how various data streams
and relief effort settings (e.g., international versus domestic, levels of access to communication tech-
nology) translate to different adaptive models. Data reliability will also play an important role in
this evaluation, since various models have different levels of robustness and threshold for accuracy
of information.

In the multi-team setting, the decisions to commit to nodes must be considered simultaneously for
all teams, changing the structure of the master problem. Future work will explore new formulations
and solution approaches for the master problem, building on earlier work for the single team problem.
A key question will be whether or not to allow some overlap in assignments. Importantly, one must
balance the need for the flexibility associated with assignment overlap to address the stochastic and
dynamic elements of the problem with the need for simpler assignment structures that require less
coordination among teams in the field. Similar issues of flexibility and consistency are emerging in
the multi-period vehicle routing literature, such as [27].

5.3 Systematic analysis of new data sources for humanitarian logistics

Our current modeling work is oriented toward resolving the difficulties commonly faced in disaster
response using information that can reasonably be made available to responders in real time. How-
ever, each disaster response scenario has its own set of challenges and requirements, as well as its
own data environment.
Taxonomy creation. In the next phase of this project, we will develop a systematic taxonomy of
new data sources (such as text messaging platforms, social media, satellite and aerial imagery, and
participatory mapping) that organizes the data streams according to variables such as reliability,
processing difficulty, context-specificity, and role as model inputs. The goals of this work are to
(1) generate a flexible framework for matching data sources to the particular requirements of the
various models described above to match a given crisis scenario; (2) form the raw material from
which further test cases will be created; and (3) prioritize future research and draw links from the
research models to the end users who will use them in combination with raw data.

Ongoing extensions of the project will first concentrate on datasets similar to the ones presented
in Section 3. Metrics will also be explored and developed that will aid in determining the necessary
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processing required for model use, supply/demand reliability, and advanced skill set requirements
for implementation in field settings. With frequent interactions with humanitarian practitioners and
other researchers, the taxonomy will develop and integrate into the broader framework of logistics
and information management in disaster settings.
Test case development. We will use the data taxonomy to extend the collection of datasets
drawn from real-world events to be used as test cases for the three levels of models introduced
in Section 4. These test cases will feature stochastic network connectivity, travel costs, demand,
and service time in a dynamic framework in which information becomes available over time from
a variety of sources; these datasets will allow model innovations to be assessed in isolation or in
combination with each other. We will use these test cases to (1) test the performance of solution
approaches and assess the relative improvements in model performance (demand served and degree
of variance) from using models with progressively more dynamic and stochastic elements; and (2)
assess the relative contribution of different data sources with varying characteristics (such as update
frequency, reliability, and specificity) in improving model performance and making better decisions.
The test cases thus serve the dual purpose of assessing both models and data sources. This work
will occur alongside data taxonomy creation and feed results in the form of data source analysis
back into the taxonomy.
Assessment of data streams. In the later stages of coming work, we will use the analyses
from our set of models and test cases to deliver a systematic assessment of real-time data from
new and emerging technologies in conjunction with our models. This work will be oriented toward
communicating our results to stakeholders and researchers in other fields to cooperatively develop
complete workflows that bring models into practice.

5.4 Education

Recent humanitarian crises have demonstrated that ready-made, deployable systems for structuring,
managing, and sharing heterogeneous data streams are a critical area of work for disaster prepared-
ness. In order to be usable, our models must be integrated into data workflows before a crisis strikes.
To this end, we will offer conclusions regarding the types of data that are most important in im-
proving model performance and that can be realistically integrated into relief operations. We also
provide recommendations, workflows, and research products targeted to practitioners.

In Winter 2014, PI Smilowitz will launch a new course in humanitarian logistics in the department
of Industrial Engineering and Management Sciences that will incorporate work from this project and
establish case studies to be used in the course and made available to other universities.

The Northwestern University Humanitarian and Non-Profit Logistics Initiative website [15] serves
as a central point for outreach, dissemination of research results, and sharing datasets and other
research products. The site currently houses information about the pilot study discussed in Section
2 as well as generated network datasets.
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