
The reliable a priori shortest path problem (RASP) studied in this
research aims to find a priori paths that are shortest to ensure a spec-
ified probability of on-time arrival. The authors (28) have shown
that the RASP belongs to a class of multiple-criteria shortest path
problems that rely on a dominance relationship to obtain Pareto-
optimal solutions (7, 16, 29); that is, no further travel time improve-
ments associated with any on-time arrival probability can be made
without worsening those associated with other probability levels.
Because the dominance relationship in RASP is defined with respect
to the cumulative distribution function (CDF) of path travel times, it
is effectively equivalent to the FSD rule considered by Miller-Hooks
(25) and Bard and Bennett (27). The RASP formulation proposed by
Nie and Wu (28) is continuous and solved with a label-correcting
algorithm similar to that of Miller-Hooks (25).

This paper proposes and tests several implementation strategies
intended to improve the computational performance of the solution
algorithms for RASP. Because the dominance relationship is deter-
mined on the basis of CDFs, how to calculate and store them is crit-
ical to the efficiency of solution algorithms. These operations often
involve discretizing continuous probability density functions and
numerically evaluating convolution integrals. A challenge in the
conventional discretization scheme (e.g., 28, 30) is that the length
of the analysis period T has to be set so large that trips on most paths
can be completed with a probability of 1.0. For one thing, it is diffi-
cult to determine T with analytical methods. More important, T is
problem-specific in the sense that it increases with network size and
depends on travel time distributions. Because computational cost
increases rapidly with T for the same resolution, the existing dis-
cretization scheme is not suitable for large networks. An alternative
scheme is proposed to overcome this drawback, using the inverse of
a CDF. A procedure to evaluate the convolution integral using this
discretization scheme is also proposed.

It is well known that multicriteria shortest path problems are
intractable because of the nondeterministic polynomial (NP) bound of
Pareto-optimal solutions. The RASP is no exception. Typical heuris-
tic strategies attempt to overcome the difficulty by limiting the size of
nondominant paths. For example, Nie and Wu recently proposed the
extreme-dominance approximation (EDA) strategy (28). EDA ignores
nondominant paths that do not contribute directly to the Pareto
frontier, thereby effectively restricting the number of these paths.
Preliminary results demonstrated the satisfactory performance of
EDA (28). However, like other heuristics, this strategy may not yield
correct Pareto-optimal solutions. In the worst case, it may not even
identify a subset of nondominant paths. Therefore, a comprehensive
computational study is needed to evaluate EDA on networks of dif-
ferent sizes and densities and with the newly proposed discretization
scheme.

Nie and Wu proved the acyclicity of nondominant paths and sug-
gest that preventing cyclic paths from temporarily entering the non-
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Solution techniques are studied for the problem of finding a priori paths
that are shortest to ensure a specified probability of on-time arrival in
a stochastic network. A new discretization scheme called �-discrete is
proposed. The scheme is well suited to large-scale applications because it
does not depend on problem-specific parameters. A procedure for evalu-
ating convolution integrals based on the new scheme is given, and its com-
plexity is analyzed. Other implementation strategies also are discussed to
improve the computational performance of the exact yet nondeterminis-
tic polynomial label-correcting algorithm. These include an approximate
method based on extreme dominance and two cycle-avoidance strategies.
Comprehensive numerical experiments are conducted to test the effects
of the proposed implementation strategies using different networks and
different distribution types.

Optimal path problems in a stochastic network have been intensively
studied. Conventionally, a path is considered optimal if it incurs the
least-expected travel time (1–12). To address the reliability of path
travel times, Frank (13) and Mirchandani (14) define the optimal path
as the one that maximizes the probability of realizing a travel time
equal to or less than a given threshold. Sigal et al. suggest using the
maximum probability of being the shortest path as an optimality index
(15). Using expected utility theory, Loui shows that, for polynomial
functions, utility maximization is reduced to a class of bi-criteria
shortest path problems that trade off mean and variance of random
travel times (16). This result is consistent with the mean-variance rule
that has long been used in portfolio selection (17 ).

Similar routing problems have been studied elsewhere (18–20).
Stochastic optimal-path problems also have been approached using
robust optimization, which usually implies that a path is optimal if
its worst-case travel time is the minimum (21–23). Miller-Hooks and
Mahmassani define the optimal path as the one that realizes the least
possible travel time in stochastic and time-varying networks (24).
Later, other definitions of optimality based on various dominance
relationships also were explored, namely, deterministic dominance,
first-order stochastic dominance (FSD), and expected value domi-
nance (25, 26). Label-correcting algorithms were proposed to solve
nondominant paths corresponding to each definition of dominance
rules. Bard and Bennett also used FSD to determine optimal paths
in a stochastic network and proposed a network reduction algorithm
for acyclic networks (27 ).
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dominance set may be beneficial from a computational point of view;
however, no numerical results were provided (28). In this study,
two cycle-avoidance strategies are proposed, and experiments are
conducted to evaluate their impacts on the overall computational
performance.

The remainder of the paper is organized as follows. First, the
RASPs and a general label-correcting algorithm are reviewed. Next,
the authors’ previous discretization scheme is reviewed (28), and
a better alternative is proposed. Then, EDA and cycle-avoidance
strategies are discussed. Finally, a comprehensive computational
study and conclusions are presented.

PROBLEM STATEMENT 
AND SOLUTION ALGORITHM

Consider a directed and connected network G(N, A, P) consisting of
a set of nodes N (⎟ N⎟ = n), a set of links A (⎟ A⎟ = m), and a probabil-
ity distribution P describing the statistics of link travel times. The
analysis period is set to be [0, T ]. Let the destination of routing be s
and the desirable arrival time be aligned with the end of the analy-
sis period T. Travel times on different links (denoted as cij) are
assumed to be independent random variables, each of which follows
a random distribution with a probability density function pij (•). Let
Fij(�) be the CDF of cij. To focus discussion on implementation issues,
the dependence of pij on time of day and correlations among cij are
ignored in this paper; dependence on time and correlations are
addressed elsewhere (28, 31). Most solution techniques discussed in
this paper are applicable in those extended models. The travel time
on path krs (which connects node r and the destination s) is denoted
as π rs

k . All paths that connect r and s form a set Krs. Finally, let urs
k (b)

denote the maximum probability of arriving at s through path krs no
later than T, departing r with a time budget b.

This paper is concerned with the RASP that aims to find, starting
from any node i ≠ s, a priori paths that are shortest to ensure a spec-
ified probability of arriving at the destination s on time. The authors
showed that this problem is equivalent to finding all nondominant
paths under the FSD rule, which is used to compare random variables
based on their cumulative density functions (CDFs) (28). The results
are summarized here, but readers are referred to the original work
for more details.

First, FSD must be defined to formulate the RASP. To the authors’
best knowledge, this concept was first introduced to shortest path
problems by Miller-Hooks and Mahmassani, albeit in a form differ-
ent from this one (25, 26). Also, Definition 1 differs from the clas-
sic definition (32) because the random variables discussed herein
(i.e., travel time or cost) are related to disutility instead of utility.

Definition 1. FSD �1: Path krs dominates path l rs in the first
order, denoted as krs�1l rs, if and only if urs

k (b) ≥ urs
l (b) for all b

in [0, T] and at least one strict inequality. Nondominant paths
under the FSD rule are called FSD-admissible paths in this
paper, as defined below.

Definition 2. FSD-admissible path: A path lrs is FSD-admis-
sible if ∃ no path krs such that krs�1lrs. The RASP equals the
problem of identifying all FSD-admissible paths between (i,s),
∀i ≠ s. However, it is possible that an FSD-admissible path is
not shortest for any on-time arrival probability. To clarify this
point, FSD optimality is defined next.

Definition 3. FSD-optimal path: A path krs is FSD-optimal
if (a) it is FSD-admissible and (b) ∃ one open interval Λ ⊂ [0, T]
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with nonzero Lebesque measures such that u rs
k (b) ≥ u rs

l (b), ∀
b ∈ Λ, ∀l ≠ k.

The set of FSD-admissible and FSD-optimal paths between an OD
pair rs can be with Γrs and Ωrs, respectively. Note that Ωrs ⊆ Γ rs by
definition. At any node i ∈ N, define uis(b) ≡ max{uk

is(b), ∀k is ∈ Ωis,
∀b}. The function uis(�) is called the Pareto frontier function at node
i, which constitutes optimal solutions of the RASP. Note that after uis

is known, one can identify a path 
–
kis(b) ∈ Ωis such that uis–

k (b) = uis(b)
for a given b.

The above definitions use the function urs
k (�) to represent the distri-

bution of the random path travel time π rs
k . This distribution also may

be represented by the inverse of urs
k , denoted by v rs

k (�). The v rs
k (α) term

gives the shortest travel time b (or the latest departure time T − b) to
arrive at s at or earlier than T with a probability α. According to Def-
inition 1, if two paths are such that krs �1 l rs, then v rs

k (α) ≤ v rs
l (α) for

all α in [0, 1] and v rs
k (α) < v rs

l (α) for some α. FSD optimality and the
Pareto frontier function can be redefined accordingly using v rs

k . In par-
ticular, the inverse Pareto frontier function v is(α) ≡ min{v is

k (α), ∀kis

∈ Ωis, ∀α}. One reason why using v rs
k to represent the distribution of

π rs
k may be more favorable is that it is defined on a fixed support range

[0, 1], whereas the support of u rs
k depends on T, which varies with

problem-specific parameters such as network size and distributions.
This point is elaborated in the next section.

Miller-Hooks shows that any subpath of an FSD-admissible path
must also be FSD-admissible (25). Using this result, Nie and Wu
formulated the RASP as the following dynamic programming
problem (28):

where kjs◊ij extends path kjs along link ij; γ 1
�(K ) represents the

operation that retrieves FSD-admissible paths from a set K using
Definition 2; and 0ss is a dummy path representing the boundary con-
dition. Problem 1 can be solved using a label-correcting (LC) algo-
rithm. The following algorithm is taken from Nie and Wu, with slight
modifications (28):

FSD-LC algorithm
Step 0. Initialization. Let 0ss be a dummy path from the des-

tination to itself. Initialize the scan list Q = {0ss}. Set π ss
0 = 1

with probability 1.
Step 1. Select the first path from Q, denoted as l js, and delete

it from Q.
Step 2. For any predecessor node i of j, create a new path k is

by extending l js along link ij.
Calculate the distribution of π js

k from the distribution of π js
l

by convolution integral.
Compare the new path kis with the current Pareto frontier.

If the frontier is dominated by kis, update the frontier with
the distribution of π is

k , drop all existing FSD-admissible paths
at node i, and set Γ is = {k is}, Ωis = {k is}. Otherwise, further
compare the distribution of the new paths and all existing
FSD-admissible paths to check FSD admissibility. If any of
the existing path dominates kis, drop kis and go back to Step 2;
otherwise, delete all paths that are dominated by k is from Γ is,
then set Γis∪ {kis}, and update Q = Q ∪ {kis}.
Step 3. If Q is empty, stop; otherwise, go to Step 1.

Find such thatΓ

Γ Γ

is

is is js js j

i

k k ij k

,∀

= = ◊ | ∈γ �
1 ( ss ss ssij i s∀ ∈ ,∀ ≠ ; =A) ( )Γ 0 1



IMPLEMENTATION ISSUES: FSD-LC ALGORITHM

The FSD-LC algorithm has an NP complexity because the number
of FSD-admissible paths may grow exponentially with network size
(25, 28). However, actual performance of the algorithm depends on
many implementation issues, which are the focal points of the pres-
ent paper. In the next section, the impact of discretization schemes
on the evaluation of the π rs

k distribution is examined in Step 2 of the
FSD-LC algorithm.

Discretization Schemes

If random link travel times follow a continuous probability density
function pij, then the distribution π rs

k can be calculated recursively
from the following convolution integral:

The above integral may be calculated using Laplace transform
(LT) (33). However, because efficient LT implementation requires
evaluating convolution only at a few predetermined Gaussian quad-
rature points, the method may only identify a small subset of all FSD-
admissible paths and thereby fail to determine the correct Pareto
frontier functions. The LT-based method is also numerically unstable
because it must address the inverse of a Vandermonde matrix.

A simple yet effective alternative that overcomes these difficul-
ties is to discretize the analysis period [0, T ] evenly into L intervals
of length ϕ and check the distribution for FSD-admissibility at all
L points. In such a discretization scheme, pij must be first discretized
to get the corresponding probability mass function (PMF) Pij:

Accordingly, the evaluation of the convolution integral in Equation 2
is replaced with a finite sum as

Using Equation 4, O(L2) steps are required to calculate uis
k(b) for all

discrete b. Nie and Wu adopted the above discretization scheme, here-
after referred to as the b-discrete method (28). When using b-discrete,
the FSD-LC algorithm runs in an NP time O(mn2n−1 + mnn L2). To
see this, note that in the worst case, there are nn−1 paths and therefore
Step 2 of the algorithm must be executed mnn−1 times. As analyzed
before, convolution requires O(L2) steps, and it takes O(nn−1L) steps
to compare the distribution function of the newly generated path with
those of the paths currently stored in Γ is (the distribution function is
approximated by L discrete points).

The size of L depends on both T and ϕ. Although ϕ can be set
independent of network size, T cannot. In the proposed model, T is
the desired arrival time. Ideally, the analysis period [0, T ] should
equal the longest possible time to arrive at the destination starting at
any time t ≥ 0, at any origin. Essentially, it allows all trips to be com-
pleted with a probability up to 1.0. For example, if the desired arrival

u b u b P b Lk
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b

k
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time is 9:00 a.m. and the longest possible travel time is 6 h, then the
origin of the analysis time period should be set at 3:00 a.m. In this
case, if ϕ = 5 min, then L = 6 × 12 = 72. Unfortunately, obtaining a
good estimate of the maximum possible trip time itself is a hard prob-
lem for which no polynomial algorithms seem to exist (Miller-Hooks
and Mahmassani discuss the least-possible time path problem [24]).
To bypass this difficulty, one may simply set T to be a large number.
However, this brute-force treatment will raise computational issues
because the complexity of the discrete algorithm depends on L. In a
nutshell, the b-discrete method is unsatisfactory because it leads to
problem-specific complexity.

An alternative discretization method is proposed to overcome
the shortcoming of b-discrete. Instead of discretizing the analysis
period [0, T ], the new method, called α-discrete, considers a set
of discrete points in the space of cumulative probability, namely,
α = �, 2�, . . . , 1.0, where L� = 1.0. Corresponding to the α-discrete
points, a sequence of discrete travel times bij

t are generated for each
link ij such that 0 = bij

0 < bij
1 < . . . < bij

t < . . . < bij
L and

where F −1
ij (�) is the inverse CDF of cij. Equation 5 implies

and with the mean value theorem, b̂ ij
t always can be found for each

interval [bij
t−1, bij

t ] such that

Thus, the PMF in this discrete scheme is given by

Accordingly, the distribution of path travel time πis
k is represented

by v is
k instead of uis

k . Given v is
k and F −1

ij (�), v is
k can be approximately

calculated using the following alternative convolution integral
(ACI) procedure:

ACI procedure
Step 0. Set η = 0. For t1 = 1, . . . , L; for t2 = 1, . . . , L: set 

η = η + 1, zη = v js
k (t1�) + b̂ ij

t2
.

Step 1. Sort zη in an ascending order.
Step 2. Construct the inverse CDF using vis

k (t�) = ztL

t = 1, . . . , L.

In Step 0, L2 possible realizations of travel times are enumerated
and stored in zη. In Step 1, sorting a vector of length L2 requires
O(L2logL) steps if a binary tree is implemented. The last step con-
sumes O(L) steps. Thus, the complexity of the procedure is dom-
inated by the second step, which is higher than that of the discrete
convolution (Equation 4) by a factor of log(L).

In the α-discrete method, L does not depend on T. The trade-off
between accuracy and computational cost can be easily controlled
by selecting an �, without considering network size and other problem-
specific parameters. Consequently, although the α-discrete method
is more time-consuming than b-discrete for the same L, the extra com-
putational overhead could be offset because α-discrete may lead to
a smaller L.
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Extreme-Dominance Approximation

Because the number of FSD-admissible paths may grow exponen-
tially, it is necessary in large-scale applications to restrict the size
of admissible sets to make the FSD-LC algorithm computationally
viable. Miller-Hooks does not allow the number of admissible paths
to exceed a predetermined upper bound, and any extra admissible
paths are removed, arbitrarily or according to a heuristic rule (25).

Nie and Wu’s approximate algorithm is based on the assump-
tion that dynamic programming applies to FSD-optimal paths (28).
In this method, paths that are not FSD-optimal are excluded from
further consideration. In other words, a path is retained only if it
contributes to the Pareto frontier. Henig calls this heuristic method
FSD–extreme-dominance approximate (FSD-EDA) (34). FSD-EDA
offers much better complexity than FSD-LC because it limits the
number of admissible paths to L.

The following display shows how this heuristic method is imple-
mented using the α-discrete method (b-discrete can be implemented
similarly [28]). Let σ(kis) denote the total number of discrete points
α = t�, where v is

k (α) = v is(α) [i.e., v is(α) contributes to the frontier at
α]. Thus, if σ(kis) = 0, path k is is not FSD-optimal. Also, recall that
–
k is(α) is the path associated with the inverse Pareto frontier at α.

FSD-CHECK procedure
Inputs: A new path lis, a set of current FSD-admissible paths

Γ is, and Pareto frontier function vis.
Return: A Boolean value FSD indicating whether l is is FSD-

admissible.
Step 0. Set FSD = TRUE, set σ(l is) = 0, set Q′ = Ø (Q′ is the set

of paths that are currently FSD-admissible but not FSD-optimal).
Step 1. Update Pareto frontier and identify Q′.
For each α = 0, �, 2�, . . . , L� do

Set kis = –
k is(α). If v is

l (α) < v is(α): update
vis(α) = v is

l (α), –k is(α) = lis, σ(lis) = σ(lis) + 1, σ(kis) = σ(kis) −
1. If σ(kis) = 0, set Q′ = Q′∪kis.

End for.
Step 2. If Extreme-Dominance, go to Step 3; otherwise, go

to Step 4.
Step 3. Delete all paths in Q′. If σ(l is) = 0, return FALSE; oth-

erwise; return TRUE.
Step 4. While LR = TRUE and Q′ is not empty, do

For each path kis in Q′ do: set nl = 0, ne = 0, ng = 0.
For α = 0, �, 2�, . . . , L� and if (nl = 0 or ng = 0) do

If v is
l (α) < v is

k (α), set ng = ng +1; else if v is
l (α) = v is

k (α),
ne = ne +1; else, nl = nl +1.

End for.

If nl = 0, set LR = FALSE; else if ng = 0, set .

End while.

The most time-consuming pairwise comparison of distribu-
tion functions—Step 4, which consumes at most O(Lnn−1) steps—
is avoided in the procedure. Because the total number of FSD-
admissible paths cannot exceed L, the complexity of FSD-EDA is
pseudo-polynomial, that is, O(mL3) for b-discrete and O(mL3logL)
for α-discrete. Although the procedure is computationally appealing,
FSD-EDA does not necessarily obtain the correct Pareto frontier
functions. In the worst case, it is unclear whether the algorithm can
identify at least a subset of FSD-admissible paths. The authors’
preliminary results indicate that FSD-EDA produces good approx-
imations of Pareto frontier functions despite its theoretical defi-
ciency (28). In this paper, the validity of FSD-EDA is further tested
using different networks and discretization schemes.

Γ Γis
is

isk
=
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Cycle Check

As proven previously, FSD-admissible paths must not contain any
cycles (28). This property also holds in the time-dependent case,
provided that time-varying probability density functions satisfy
certain stochastic first-in, first-out conditions (31). Acyclicity can
be used in the FSD-LC algorithm to inspect a new path generated
from Step 2. Specifically, whenever path kjs is extended to node i,
one should check whether i is already contained in kjs. This extra oper-
ation may be worthwhile, because once a cyclic path is allowed to
enter Step 2 of the FSD-LC algorithm, eliminating it may take up to
O(L2 + nn−1L) steps. Let ω(l js) be a subpath operator, namely, ω(l js) =
lps and jp ∈ A. A complete cycle check can be performed as follows.

CYCLE-CHECK Procedure
Inputs: Path l js and node i such that ij ∈ A.
Return: A Boolean value CR indicating whether i has been 

traversed by l js.
Step 0. Set lps = ω(l js), if p = i, CR = TRUE, stop; else if p = s,

CR = FALSE, stop; otherwise go to Step 1.
Step 1. Set j = p, go to Step 0.

This operation consumes at most O(n) steps. In sparse networks,
many cycles are direct, that is, they involve only adjacent links (e.g.,
i → j → i). Therefore, checking for only these direct cycles still can
eliminate many if not most cyclic paths but is more computationally
efficient. Implementation of this heuristic cycle check is the same as
the CYCLE-CHECK procedure except that Step 1 is ignored. How-
ever, whether this approximate method will improve overall com-
putation performance remains to be verified using numerical results
because it does not exclude all cyclic paths.

NUMERICAL RESULTS

Comprehensive numerical experiments are conducted in this sec-
tion to compare different discretization schemes (α-discrete vs.
b-discrete), examine the sensitivity of the practical performance of
the FSD-LC and FSD-EDA algorithms to network size and density,
and test the impact of various cycle-check strategies. The algorithms
were coded using MS-C++ and tested on a Windows XP (64-bit)
workstation with two 3.00-GHz Xeon central processing units (CPUs)
and 4 GB of RAM.

Comparison of Two Discretization Schemes

The FSD-LC algorithm was implemented using both α-discrete
and b-discrete schemes and tested on a real road network in the
Chicago area that has 933 nodes and 2,930 links. The network,
known as Chicago Sketch, has been used to test traffic assignment
problems (35).

Link distributions in this experiment are assumed to follow a
Gamma or a uniform distribution. Although real travel times may
follow neither distribution, the purpose is to reveal the impact of
the shape of the distribution function on the performance of the
discrete methods. The probability density function of the Gamma
distribution is

p x x eij
x( )

( )
( )= − − /1
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θ κκ
κ θ

Γ



where θ and κ are parameters and Γ(�) is the Gamma function. The
mean and variance of a Gamma distribution are κθ and κθ2, respec-
tively. In the present experiment, κ and θ are generated randomly
using a uniform distribution for all links; specifically, θ ∝ U(0.8,3.5)
and κ ∝ U(1.0, 2.5). Thus, the mean and standard deviation of link tra-
versal times are within the ranges [0.80, 8.75] and [0.80, 5.53], respec-
tively. For uniform distribution pij(x) = 1/(U–L), L is fixed at 0 and 
U is randomly drawn from [3.5, 10]. The length of the analysis period
T for the b-discrete method is set to 100, which was found through
trial and error to be large enough to guarantee trips on admissible
paths to be completed with a probability close enough to 1.0.

Four b-discrete schemes are considered, in which T is divided into
L = 100, 200, 500, and 1,000 discrete intervals (corresponding to
ϕ = 1, 0.5, 0.2, and 0.1, respectively) named Schemes B-I, B-II, B-III,
and B-IV, respectively. In addition, three α-discrete schemes were
tested: � = 2%, 1%, and 0.5%, corresponding to L = 50, 100, and 200
and named Schemes A-I, A-II, and A-III, respectively. Because B-IV
has the highest resolution in all schemes, it was used as the benchmark
scheme against which approximation errors of other schemes were
evaluated.

The FSD-LC algorithm was run first to find FSD-admissible paths
for Destination 933 using all seven schemes. Pareto frontier functions
of path travel times for origin–destination (O-D) pair (1, 933) are
shown, with inverse Pareto functions generated from the α-discrete
method inverted for comparison, in Figure 1. As expected, the higher
the resolution of a discretization scheme, the closer its Pareto fron-
tier is to the benchmark. Interestingly, approximation errors tend to
underestimate the on-time arrival probability in all cases. This find-
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ing is good news for risk-averse travelers because it keeps errors on
the safe side. Second, for the same L, approximation errors from the
α-discrete scheme seem smaller. The frontier produced by A-III (L =
200) is close to the benchmark for either distribution (Figures 1b and
1d ). However, the α-discrete method leads to larger errors when
desired probabilities are close to 1.0 or 0.0. For example, the fron-
tier of Scheme A-I is comparable to that of B-III when 0.1 < α < 0.6,
whereas a much larger discrepancy is observed between the two
beyond that range. The reason may be that some ̂bij

t (Equation 5) are
overestimated (or underestimated) when t� is close to 0 (or 1). This
phenomenon is more prominent in Gamma distribution, probably
because of its long tail.

For further comparison, the FSD-LC algorithm was run for 10 ran-
domly selected destinations; average performance indexes for each
scheme are reported in Table 1. To quantify the discrepancy between
the frontiers of schemes x and y, overall maximum gap is defined as

where uis
x (�) is the Pareto frontier function between i and s for scheme

x. Because Figure 1 suggests that the relative discrepancy may vary
for different on-time probabilities, the gaps were calculated separately
in two intervals of T: Λ1 = [0, 60] and Λ2 = (60, 100).

Results reported in Table 1 confirm the authors’ previous obser-
vations that, on average and with the same L, the α-discrete method
produces more accurate frontiers. One possible explanation is that
α-discrete has more “effective” support points to represent link dis-
tributions in the present experiments. In the b-discrete method, a

Δ = | − | ∀ ∈ ,∀ ∈{ }xy
s

x
is

y
isu b u b b isup max( ( ) ( ) ) (Λ N 100)

(a) (b)

(c) (d)

FIGURE 1 Comparison of Pareto frontiers for O-D Pair (1, 933) using Scheme B-IV as benchmark: (a, b) uniform distribution and
(c, d) Gamma distribution.



support point at b is not effective when F(b) is close enough to 1.0 or
0.0; in fact, more than 80 of 100 such support points can be ineffec-
tive in the b-discrete method. In contrast, most discrete points in
α-discrete are effective.

For the b-discrete method, when L is increased from 100 to
200, 500, and 1,000, CPU times increase 4.8, 30.0, and 114.1 times
(Gamma distribution) or 4.2, 34.8, and 111.6 times (uniform distri-
bution), respectively. For α-discrete, when L is increased from 50
to 100 and then 200, CPU times increase 5.1 and 27.1 times (Gamma
distribution) or 5.2 and 20.9 times (uniform distribution), respec-
tively. These trends roughly agree with the previous analysis, which
indicated that the complexity increases with O(L2) for b-discrete and
O(L2 logL) for the α-discrete method. Because the number of FSD-
admissible paths also grows slightly when L increases, the actual grow
rate of CPU times is higher than the prediction of the above bounds.

For the Gamma distribution, the b-discrete method runs faster than
α-discrete for similar L values, partly because the American Concrete
Institute (ACI) procedure needs extra O(logL) steps for sorting.
Another reason has to do with an implementation detail. In the 
b-discrete method, the comparison between CDFs (conducted in the
FSD-CHECK procedure) is terminated if any one gets close enough
to 1 and a dominance relationship holds. Because these conditions
could be met well before b reaches the upper bound T, the cost of
path comparisons may be lower in the b-discrete method than in the
α-discrete method if L is the same.

Interestingly, the uniform distribution results listed in Table 1
appear to be conflicting; specifically, the α-discrete method ran con-
sistently faster. A close look reveals that for a uniform distribution,
fewer FSD-admissible paths were solved by the α-discrete than by the
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b-discrete method. To reveal why this happens, the distribution func-
tions of 42 FSD-admissible paths for O-D pair (547, 722) were plot-
ted, generated from Scheme B-I, with the frontier of the benchmark
scheme B-IV (Figure 2a). In comparison, only one FSD-admissible
path is identified from Scheme A-II (Figure 2b). Figure 2a shows only
one nondominant path within the interval 0.01 ≤ α ≤ 0.09—the path
also found by the α-discrete method. Other 41 FSD-admissible paths
are nondominant in the interval 0.99 < α < 1 (40 paths) or the interval
0 < α < 0.01 (1 path). Because no support point exists in the two inter-
vals in Scheme A-II (note that � = 0), the α-discrete method misses
those 41 nondominant solutions. However, those missed paths are
almost useless in practice because few travelers would be sensi-
tive to an improvement of less than 1% on-time arrival reliability.
More important, with only 1 admissible path, the frontier generated
from Scheme A-II turns out to be much more accurate than that from
Scheme B-I, which consists of 42 admissible paths.

In summary, results indicate that the α-discrete method is a com-
petitive alternative to the b-discrete method. It not only makes it
possible to apply the FSD-LC algorithm to large networks but also
provides a reasonable approximation with comparable computational
expense.

Impact of Network Size and Density

This experiment was designed to test how network size (n, number of
nodes) and density (m/n, where m is the number of links) affect FSD-
LC and FSD-EDA performance. A random network generator was
used to create a sequence of grid networks of various sizes (n and m

TABLE 1 Computational Performance of Different Discretization Schemes on Chicago Sketch

b-Discrete α-Discrete

Scheme B-I B-II B-III B-IVa A-I A-II A-III

Gamma Distribution

CPU time b 1.45 6.94 43.54 165.51 6.65 33.92 180.46

Avg ⎟ Γis⎟ c 5.25 6.67 7.40 7.14 3.32 3.62 4.08

Max ⎟ Γis⎟ c 23.80 31.50 34.20 31.70 19.90 21.00 23.50

Λ1: T ≤ 60

Avg Δ s
xy 0.291 0.134 0.034 0.063 0.040 0.020

Max Δ s
xy 0.462 0.217 0.055 0.257 0.085 0.059

Λ2: 60 <T<100

Avg Δ s
xy 0.116 0.047 0.011 0.063 0.053 0.022

Max Δ s
xy 0.464 0.211 0.052 0.254 0.123 0.066

Uniform Distribution

CPU time 4.54 19.16 157.96 506.57 1.98 10.29 41.29

Avg ⎟ Γis⎟ 10.67 13.48 16.29 16.08 1.67 1.68 1.71

Max ⎟ Γis⎟ 44.10 58.40 58.40 60.90 8.40 7.90 7.70

Λ1: T≤60

Avg Δ s
x,IV 0.336 0.159 0.041 0.045 0.035 0.013

Max Δ s
x,IV 0.528 0.255 0.066 0.192 0.062 0.040

Λ2: 60<T<100

Avg Δ s
x,IV 0.142 0.058 0.013 0.045 0.030 0.011

Max Δ s
x,IV 0.557 0.266 0.068 0.190 0.093 0.044

aAll frontiers are compared with the frontier of Scenario B-IV.
bCPU times are measured in seconds.
cAvg⎟ Γis⎟ (or max⎟ Γis⎟ ) refers to the average (or maximum) number of FSD-admissible paths for all nodes.



of those networks are listed in Table 2). Gamma distribution is used to
model random travel times, with the same setting of θ and κ from the
previous section. Only the α-discrete method (� = 1%) was used in
this experiment, because the b-discrete method is computationally
demanding for large networks. For example, a single run requires more
than 2 h to finish using b-discrete for a 50 × 50 network in which both
T and L must be set to 500 to achieve a reasonable approximation.

For each network listed in Table 2, the FSD-LC and FSD-EDA
algorithms were run 10 times for randomly selected destinations.
Average performance indexes are reported in Table 2. The overall
maximum gap Δs

xy defined in Equation 10 is used to measure the dif-
ference between the Pareto frontiers produced by the two algorithms
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(note that x and y in Equation 10 now refer to different algorithms
instead of different schemes).

First, experimental results suggest that for either algorithm, �Γis�
does not increase exponentially with n, in agreement with results
reported in previous studies (25). Actually, �Γis� grows almost linearly
with n in the present test. Results also show that the relationship
between CPU times and n can be fitted by using a quadratic function
for both algorithms (measured in seconds). Specifically,

The above formulae may be valid only for networks with similar
topology.

Second, the FSD-EDA algorithm outperforms the exact algorithm
in CPU times, especially for large networks (Table 2). It is almost
five times faster, on average, for the 70 × 70 network. Apparently,
this computational advantage is achieved because the FSD-EDA algo-
rithm operates on a smaller set of FSD-admissible paths. Nevertheless,
even though it ignores many admissible paths (e.g., it identifies only
one-quarter of all admissible paths for the 70 × 70 network), the
FSD-EDA algorithm generates good approximates of the Pareto
frontier. In all test scenarios, the maximum gap between the fron-
tiers is always less than 0.001, corresponding to no more than 0.1%
of on-time arrival probability.

Next, the impact of network density (m/n) is examined on the per-
formance of the FSD-LC algorithm. Networks with different m were
generated by adding extra links to the 20 × 20 and 30 × 30 grid net-
works from the first experiment (Table 3). Similarly, 10 destinations
were randomly selected for each network and solved using the FSD-
LC algorithm to obtain average performance indexes. The CPU times,
admissible path sizes, and number of cross-comparisons between
paths also are reported in Table 3.

The most interesting finding from Table 3 is that CPU times and
the number of FSD-admissible paths (�Γis�) do not increase mono-
tonically with m. Instead, these indexes first increase but then begin
to drop once m exceeds a certain threshold. For the 20 × 20 net-
work, when m increases from 4,668 to 5,972, both �Γis� and CPU
times are reduced by nearly 10%. �Γis� increases initially when the
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FIGURE 2 CDFs of FSD-admissible paths between O-D Pair (547,
722) (L � 100).

TABLE 2 Computational Performance of FSD-LC and FSD-EDA for Networks of Various Sizes

Network Algorithm CPU times Avg ⎟ Γis⎟ Max ⎟ Γis⎟ Avg Δ s
xy

b Max Δ s
xy

70 × 70a FSD-LC 5,665.10 92.37 2,013.20 4.23E-04 6.47E-04
# links: 19,320 FSD-EDA 1,087.17 23.46 163.90

60 × 60 FSD-LC 2,301.55 56.45 1,051.50 3.28E-04 5.34E-04
# links: 14,160 FSD-EDA 651.92 18.29 117.30

50 × 50 FSD-LC 921.93 39.30 751.70 4.97E-04 6.77E-04
# links: 9,800 FSD-EDA 343.75 15.67 102.90

40 × 40 FSD-LC 261.61 18.12 253.70 2.07E-04 3.82E-04
# links: 6,240 FSD-EDA 136.31 9.59 65.20

30 × 30 FSD-LC 82.62 10.52 118.56 2.22E-04 4.32E-04
# links: 3,480 FSD-EDA 53.24 6.67 40.89

20 × 20 FSD-LC 14.04 4.38 27.11 1.18E-04 1.87E-04
# links: 1,520 FSD-EDA 11.72 3.65 17.78

10 × 10 FSD-LC 1.46 2.09 6.89 2.92E-05 3.66E-05
# links: 360 FSD-EDA 1.42 2.00 6.22

a70 × 70 grid network means there are 4,900 nodes in the network.
bΔ s

xy refers to the overall maximum gaps between two frontiers solved by FSD-LC and FSD-EDA.



network becomes denser, apparently because more paths are avail-
able in a denser network. However, the increase in density also has
a countereffect: more shortcuts will appear in a denser network,
which may dominate many otherwise admissible paths. As a result,
even though the total number of paths always increases, �Γis� may not.

Effects of Cycle Check

Cycle check introduces extra costs but could potentially reduce the
number of path comparisons. This experiment attempts to identify
the effects of various cycle-check strategies on the performance of the
FSD-LC algorithm. Two strategies are considered: full cycle check
(all nodes on the current path are checked to make sure the new path
does not form any cycle) and direct cycle check (which attempts only
to exclude the direct cycle involving adjacent links). These two strate-
gies were compared with the no–cycle check scenario on three sets of
networks: two sets of random networks with various densities (20 × 20
and 30 × 30) and a set of grid networks with similar density but dif-
ferent sizes. The FSD-LC algorithm was used in this test with Dis-
cretization Scheme A-II. The average performance indexes obtained
from 10 runs for each network are listed in Tables 4 and 5.

Overall, the expense of cycle check pays off well. The algorithm
is consistently accelerated by either cycle-check strategy, with up to
30% CPU time savings (Tables 4 and 5). Moreover, the two strate-
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gies demonstrate similar performance, apparently because more than
90% of excluded cycles are direct cycles, regardless of network size
and density. In larger networks (n > 2,000 nodes), direct cycle check
appears to lead full cycle check with a modest margin (2% to 3%).
Thus in practice, performing a direct cycle check may be sufficient.

The relative CPU time savings of cycle check is quite stable when
the network size increases but the density does not change (m/n ≈ 4;
Tables 4 and 5). In all six networks (with the number of nodes
increasing from 100 to 3,600), the FSD-LC algorithm runs about
30% faster with cycle check. However, this relative performance
gain seems to drop as network density increases. For example, in the
30 × 30 networks, the percentage of CPU time savings decreases
from about 30% (when m = 3,480) to only 5% (when m = 16,476).
Thus, relative CPU time savings obtained by cycle check seems to
depend on network density rather than network size.

CONCLUSIONS

A few implementation issues of approximate algorithms were exam-
ined for the RASP problem. A new discretization scheme called 
α-discrete was proposed, as well as a corresponding procedure for
evaluating convolution integrals. This new scheme avoids a depen-
dence on problem-specific parameters such as network size and
topology and thereby better suits large-scale applications. Implemen-

TABLE 3 Computational Performance of FSD-LC Algorithm for Networks with Various Densities

20 × 20 Network 30 × 30 Network

# Links CPU Time # Paths Compared Avg |Γis | Max |Γis | # Links CPU Time # Paths Compared Avg |Γis | Max |Γis |

1,250 12.39 17,109 3.86 25.20 3,480 48.90 114,017 6.63 60.00

3,120 68.51 85,185 5.83 33.70 6,180 240.86 474,984 9.67 89.11

4,668 143.02 177,388 5.50 35.00 10,648 369.60 490,837 6.65 60.00

5,972 125.36 123,372 4.98 31.50 13,772 429.78 498,049 6.61 49.00

6,996 112.83 99,452 4.34 24.50 16,476 342.13 350,482 5.88 38.67

TABLE 4 Comparison of Various Cycle-Check Strategies by Number of Links

Full Cycle Check Direct Cycle Check No Cycle Check

# Links CPU Time # Paths Compared # Cycles Avoided CPU Time # Paths Compared # Cycles Avoided CPU Time # Paths Compared

Panel 1. Five 20 × 20 Networks

1,250 14.33 19,497 2,307 14.18 19,507 2,302 20.17 25,168

3,120 51.53 57,648 2,897 51.29 57,797 2,823 58.51 65,026

4,668 83.29 86,041 3,329 83.67 86,956 2,872 91.03 94,528

5,972 79.63 73,832 2,023 79.36 74,163 1,857 84.04 78,342

6,996 70.20 56,207 1,786 69.42 56,341 1,719 73.86 59,959

Panel 2. Five 30 × 30 Networks

3,480 49.44 113,980 7,384 48.90 114,017 7,365 68.20 133,173

6,180 241.10 473,219 16,146 240.86 474,984 15,268 280.73 547,067

10,648 368.76 487,593 13,407 369.60 490,837 11,790 399.77 536,163

13,772 430.36 495,286 12,530 429.78 498,049 11,152 458.19 535,445

16,476 344.82 350,078 8,666 342.13 350,482 8,464 363.43 372,348



tation strategies intended to improve the computational performance
of the existing label-correcting algorithms (an approximate method
based on extreme dominance and two cycle-check strategies) also
were presented. Extensive numerical experiments were conducted to
test the effects of these implementation strategies.

The findings from these experiments are summarized as follows:

• In general, the α-discrete method produces better approxima-
tion results than the b-discrete method with comparable computa-
tional costs. It typically identifies a smaller set of FSD-admissible
paths, but most missed paths appear not to substantially affect the
resulting Pareto frontier functions and therefore appear would be of
little impact in practical applications.

• EDA offers significant computational benefits. The errors from
this approximation seem to be negligible for most practical purposes.

• The number of FSD-admissible paths increases almost linearly
with network size. The algorithm runs in polynomial time. In particu-
lar, the relationship between the consumed CPU time and the number
of nodes can be fitted with a quadratic function for grid networks.

• Cycle check improves overall computational performance. In
grid networks, it might be sufficient to exclude direct cycles because
they seem to constitute most existing cycles. Also, the relative ben-
efit of cycle check depends on the density rather than the size of the
network.

The b-discrete method allows one to decompose the time dimen-
sion and thus reduce a time-dependent problem into a static one (28).
However, this property does not hold for the α-discrete method
because the support points of the distributions do not correspond to
a departure time interval like in b-discrete. As a result, developing
efficient α-discrete implementations in a time-dependent environ-
ment is a challenging issue that warrants further investigation.
Another direction for future research is to compare EDA with other
heuristic methods, such as those proposed by Miller-Hooks (25).
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