Implementation Issues for the Reliable
A Priori Shortest Path Problem

Xing Wu and Yu (Marco) Nie

Solution techniquesarestudied for the problem of findingapriori paths
that are shortest to ensurea specified probability of on-timearrival in
a stochastic network. A new discretization scheme called a-discreteis
proposed. Theschemeiswell suited to lar ge-scale applicationsbecauseit
doesnot depend on problem-specific parameters. A procedurefor evalu-
ating convolution integr alsbased on thenew schemeisgiven, and itscom-
plexity isanalyzed. Other implementation strategiesalso are discussed to
improve the computational performance of the exact yet nondeter minis-
tic polynomial label-cor recting algorithm. Theseinclude an approximate
method based on extreme dominance and two cycle-avoidance strategies.
Comprehensive numerical experimentsareconducted to test the effects
of theproposed implementation strategiesusing different networksand
different distribution types.

Optimal path problemsin astochastic network have been intensively
studied. Conventionally, apath isconsidered optimal if it incursthe
least-expected travel time (1-12). To addressthe reliability of path
travel times, Frank (13) and Mirchandani (14) definethe optimal path
as the one that maximizes the probability of realizing atravel time
equal to or lessthan agiven threshold. Sigal et al. suggest using the
maximum probability of being the shortest path asan optimality index
(15). Using expected utility theory, Loui showsthat, for polynomial
functions, utility maximization is reduced to a class of bi-criteria
shortest path problems that trade off mean and variance of random
travel times(16). Thisresult isconsistent with the mean-variancerule
that has long been used in portfolio selection (17).

Similar routing problems have been studied elsewhere (18-20).
Stochastic optimal-path problems also have been approached using
robust optimization, which usually implies that a path is optimal if
itsworst-casetravel timeisthe minimum (21-23). Miller-Hooksand
Mahmassani define the optimal path asthe onethat realizes the least
possible travel time in stochastic and time-varying networks (24).
Later, other definitions of optimality based on various dominance
relationships also were explored, namely, deterministic dominance,
first-order stochastic dominance (FSD), and expected value domi-
nance (25, 26). Label-correcting algorithms were proposed to solve
nondominant paths corresponding to each definition of dominance
rules. Bard and Bennett also used FSD to determine optimal paths
in astochastic network and proposed anetwork reduction agorithm
for acyclic networks (27).
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Thereliableapriori shortest path problem (RASP) studied inthis
research aimsto find apriori pathsthat are shortest to ensure a spec-
ified probability of on-time arrival. The authors (28) have shown
that the RASP belongs to a class of multiple-criteria shortest path
problems that rely on a dominance relationship to obtain Pareto-
optimal solutions (7, 16, 29); that is, no further travel timeimprove-
ments associated with any on-time arrival probability can be made
without worsening those associated with other probability levels.
Because the dominancerelationship in RASPis defined with respect
to the cumulative distribution function (CDF) of path travel times, it
iseffectively equivalent to the FSD rule considered by Miller-Hooks
(25) and Bard and Bennett (27). The RASP formul ation proposed by
Nie and Wu (28) is continuous and solved with a label-correcting
algorithm similar to that of Miller-Hooks (25).

This paper proposes and tests several implementation strategies
intended to improve the computational performance of the solution
algorithmsfor RASP. Because the dominance relationship is deter-
mined on the basis of CDFs, how to cal culate and store them is crit-
ical to the efficiency of solution algorithms. These operations often
involve discretizing continuous probability density functions and
numerically evaluating convolution integrals. A challenge in the
conventional discretization scheme (e.g., 28, 30) is that the length
of theanalysisperiod T hasto be set so large that trips on most paths
can be completed with a probability of 1.0. For onething, it is diffi-
cult to determine T with analytical methods. More important, T is
problem-specific in the sense that it increases with network size and
depends on travel time distributions. Because computational cost
increases rapidly with T for the same resolution, the existing dis-
cretization schemeis not suitable for large networks. An alternative
schemeis proposed to overcome this drawback, using theinverse of
a CDF. A procedure to evaluate the convolution integral using this
discretization scheme is also proposed.

It is well known that multicriteria shortest path problems are
intractable because of the nondeterministic polynomial (NP) bound of
Pareto-optimal solutions. The RASPisno exception. Typical heuris-
tic strategies attempt to overcomethe difficulty by limiting the size of
nondominant paths. For example, Nie and Wu recently proposed the
extreme-dominance approximation (EDA) strategy (28). EDA ignores
nondominant paths that do not contribute directly to the Pareto
frontier, thereby effectively restricting the number of these paths.
Preliminary results demonstrated the satisfactory performance of
EDA (28). However, like other heuristics, this strategy may notyield
correct Pareto-optimal solutions. In the worst case, it may not even
identify asubset of nondominant paths. Therefore, acomprehensive
computational study is needed to evaluate EDA on networks of dif-
ferent sizes and densities and with the newly proposed discretization
scheme.

Nie and Wu proved the acyclicity of nondominant paths and sug-
gest that preventing cyclic paths from temporarily entering the non-
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dominance set may be beneficia from acomputational point of view;
however, no numerical results were provided (28). In this study,
two cycle-avoidance strategies are proposed, and experiments are
conducted to evaluate their impacts on the overall computational
performance.

The remainder of the paper is organized as follows. First, the
RASPsand ageneral label-correcting algorithm arereviewed. Next,
the authors’ previous discretization schemeis reviewed (28), and
a better aternative is proposed. Then, EDA and cycle-avoidance
strategies are discussed. Finally, a comprehensive computational
study and conclusions are presented.

PROBLEM STATEMENT
AND SOLUTION ALGORITHM

Consider adirected and connected network G(N, A, P) consisting of
aset of nodesN (IN|=n), aset of links A (| Al=m), and a probabil-
ity distribution P describing the statistics of link travel times. The
analysisperiod isset to be [0, T]. Let the destination of routing be s
and the desirable arrival time be aligned with the end of the analy-
sis period T. Travel times on different links (denoted as c;) are
assumed to beindependent random variables, each of which follows
arandom distribution with a probability density function p; (). Let
Fii(-) bethe CDF of ;. To focusdiscussion onimplementation issues,
the dependence of p; on time of day and correlations among c; are
ignored in this paper; dependence on time and correlations are
addressed el sewhere (28, 31). Most solution techniquesdiscussed in
this paper are applicable in those extended models. The travel time
on path k™ (which connects node r and the destination s) is denoted
asm i All pathsthat connect r and sform aset K™, Finaly, let ui’(b)
denote the maximum probability of arriving at s through path k' no
later than T, departing r with atime budget b.

This paper is concerned with the RASP that aimsto find, starting
from any nodei # s, apriori pathsthat are shortest to ensure a spec-
ified probability of arriving at the destination son time. The authors
showed that this problem is equivalent to finding al nondominant
pathsunder the FSD rule, which isused to compare random variables
based on their cumulative density functions (CDFs) (28). Theresults
are summarized here, but readers are referred to the original work
for more details.

First, FSD must be defined to formulate the RASP. To the authors’
best knowledge, this concept was first introduced to shortest path
problems by Miller-Hooks and Mahmassani, abeit in aform differ-
ent from this one (25, 26). Also, Definition 1 differs from the clas-
sic definition (32) because the random variables discussed herein
(i.e., travel timeor cost) are related to disutility instead of utility.

Definition 1. FSD >;: Path k" dominates path | " in the first
order, denoted ask"™>41 "5, if and only if u(b) > ui®(b) for al b
in [0, T] and at least one strict inequality. Nondominant paths
under the FSD rule are called FSD-admissible paths in this
paper, as defined below.

Definition 2. FSD-admissible path: A path 1™ is FSD-admis-
sible if 3 no path k'™ such that k"™>,1". The RASP equals the
problem of identifying all FSD-admissible paths between (i,s),
Vi #s. However, it is possible that an FSD-admissible path is
not shortest for any on-time arrival probability. To clarify this
point, FSD optimality is defined next.

Definition 3. FSD-optimal path: A path k' is FSD-optimal
if (@) itisFSD-admissibleand (b) 3 oneopeninterval A < [0, T]
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with nonzero Lebesque measures such that ui’(b) > uj3(b), v
be A, VI £k

The set of FSD-admissible and FSD-optimal paths between an OD
pair rs can be with '™ and Q'S, respectively. Note that Q™ < I'"® by
definition. At any nodei e N, define uS(b) = max{ui*(b), Vk'se Q'
Vb}. Thefunction u(-) is called the Pareto frontier function at node
i, which constitutes optimal solutions of the RASP. Note that after u®
isknown, one can identify apath k'*(b) € Q' such that ug(b) = u'(b)
for agivenb.

The above definitions use the function ui(-) to represent the distri-
bution of the random path travel time ;. This distribution also may
berepresented by theinverse of u;’, denoted by vi(-). Thevi{(c) term
givesthe shortest travel timeb (or the latest departuretime T — b) to
arriveat sat or earlier than T with aprobability o. According to Def-
inition 1, if two paths are such that k™ > ™%, then v{c) < v{*(c) for
al oin [0, 1] and v&(or) < vi¥(e) for some o FSD optimality and the
Pareto frontier function can be redefined accordingly using v, In par-
ticular, the inverse Pareto frontier function v'S(o) = min{vi¥(c), Vk's
e Q' Voi} . Onereason why using viSto represent the distribution of
mmay bemorefavorableisthat it isdefined on afixed support range
[0, 1], whereas the support of u’depends on T, which varies with
problem-specific parameters such as network size and distributions.
This point is elaborated in the next section.

Miller-Hooks shows that any subpath of an FSD-admissible path
must also be FSD-admissible (25). Using thisresult, Nie and Wu
formulated the RASP as the following dynamic programming
problem (28):

Find T, Vi such that

=9 (K*=k™0ij |[k®eT* VijeA),VizsT*=0 (1
where K%ij extends path K along link ij; v (K) represents the
operation that retrieves FSD-admissible paths from a set K using
Definition 2; and 0*isadummy path representing the boundary con-
dition. Problem 1 can be solved using alabel-correcting (LC) algo-
rithm. Thefollowing algorithm istaken from Nieand Wu, with dlight
modifications (28):

FSD-LC agorithm
Step 0. Initialization. Let 0% be adummy path from the des-
tination to itself. Initialize the scan list Q = {0%}. Set 5= 1
with probability 1.
Step 1. Select thefirst path from Q, denoted as 'S, and delete
it from Q.
Step 2. For any predecessor nodei of j, create anew path k'
by extending I’s along link ij.
Calculatethedistribution of rt!$from the distribution of 7t!s
by convolution integral.
Compare the new path k' with the current Pareto frontier.
If the frontier is dominated by K, update the frontier with
thedistribution of {5, drop all existing FSD-admissible paths
at nodei, and set T's = {k'}, Qs = {k's} . Otherwise, further
compare the distribution of the new paths and all existing
FSD-admissible pathsto check FSD admissibility. If any of
the existing path dominates K®, drop ks and go back to Step 2;
otherwise, deleteall pathsthat are dominated by k' from "',
then set I'sU {K'}, and update Q = Q U {K'S}.
Step 3. If Q isempty, stop; otherwise, go to Step 1.
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IMPLEMENTATION ISSUES: FSD-LC ALGORITHM

The FSD-LC algorithm has an NP complexity because the number
of FSD-admissible paths may grow exponentially with network size
(25, 28). However, actual performance of the algorithm depends on
many implementation issues, which are the focal points of the pres-
ent paper. In the next section, the impact of discretization schemes
on the evaluation of the mt;° distribution is examined in Step 2 of the
FSD-LC agorithm.

Discretization Schemes

If random link travel times follow a continuous probability density
function p;, then the distribution mt;® can be calculated recursively
from the following convolution integral:

. b .
u.(b) = J'O U’ (b—w) p; (w)dw Vbel[O, T] ()

The above integral may be calculated using Laplace transform
(LT) (33). However, because efficient LT implementation requires
evaluating convolution only at afew predetermined Gaussian quad-
rature points, the method may only identify asmall subset of all FSD-
admissible paths and thereby fail to determine the correct Pareto
frontier functions. The L T-based method isalso numerically unstable
because it must address the inverse of aVVandermonde matrix.

A simpleyet effective alternative that overcomes these difficul-
tiesistodiscretizetheanalysisperiod [0, T] evenly into L intervals
of length ¢ and check the distribution for FSD-admissibility at all
L points. In such adiscretization scheme, p; must befirst discretized
to get the corresponding probability mass function (PMF) P;;:

b+
b¢gj(w)dw b=0,¢,...,(L-Do
Pu (b)= J-: [} (w)dw b= Lo 3
0 otherwise

Accordingly, the evaluation of the convolution integral in Equation 2
isreplaced with afinite sum as

ui(o) =Y uF(b-9)P(¢)  Vb=0,9,...,Lo (4)

Using Equation 4, O(L?) stepsarerequired to cal culate ulb) for all
discreteb. Nieand Wu adopted the above discreti zation scheme, here-
after referred to asthe b-discrete method (28). When using b-discrete,
the FSD-L C algorithm runsin an NP time O(mn®**+ mn" L?). To
seethis, notethat intheworst case, thereare n™* paths and therefore
Step 2 of the algorithm must be executed mn™ times. As analyzed
before, convolution requires O(L?) steps, and it takes O(n™L) steps
to compare the distribution function of the newly generated path with
those of the paths currently stored in T (the distribution function is
approximated by L discrete points).

The size of L depends on both T and ¢. Although ¢ can be set
independent of network size, T cannot. In the proposed model, T is
the desired arrival time. Ideally, the analysis period [0, T] should
equal thelongest possibletimeto arrive at the destination starting at
any timet >0, at any origin. Essentially, it allowsall tripsto be com-
pleted with aprobability upto 1.0. For example, if the desired arrival
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timeis 9:00 am. and the longest possibletravel timeis6 h, then the
origin of the analysis time period should be set at 3:00 am. In this
case, if @ =5 min, then L = 6 x 12 = 72. Unfortunately, obtaining a
good estimate of the maximum possibletrip timeitself isahard prob-
lem for which no polynomial agorithms seemto exist (Miller-Hooks
and Mahmassani discussthe least-possible time path problem [24]).
To bypassthisdifficulty, onemay simply set T to be alarge number.
However, this brute-force treatment will raise computational issues
because the complexity of the discrete algorithm dependson L. Ina
nutshell, the b-discrete method is unsatisfactory because it leads to
problem-specific complexity.

An alternative discretization method is proposed to overcome
the shortcoming of b-discrete. Instead of discretizing the analysis
period [0, T], the new method, called o.-discrete, considers a set
of discrete pointsin the space of cumulative probability, namely,
o=E¢,2e, ..., 10, whereLe =1.0. Corresponding to the a-discrete
points, a sequence of discrete travel times bf are generated for each
link ij suchthat 0=bjl<bli<...<bj<...<b/and

bl =Flte) t=1...L ®

where Fi}(-) istheinverse CDF of ¢;. Equation 5implies
t\”
Lﬁ pwWdw=e t=1...,L (6)

and with the mean value theorem, bl always can be found for each
interval [b{;, bJ] such that

P, (B)M! —bl) =€ @)
Thus, the PMF in this discrete scheme is given by
P()=€¢ t=1...,L G)

Accordingly, the distribution of path travel timem*isrepresented
by v instead of uls. Given v and Fij*(), Vi§ can be approximately
calculated using the following alternative convolution integral
(ACI) procedure:

ACI procedure

Step0. Setn=0.Fort;=1,...,L; fort,=1,...,L: set
n=n+1 2z =V{te) +b.

Step 1. Sort z, in an ascending order.

Step 2. Construct the inverse CDF using Vi (te) = z,
t=1,...,L.

In Step O, L2 possible realizations of travel times are enumerated
and stored in z,. In Step 1, sorting a vector of length L? requires
O(L?logL) stepsif abinary treeisimplemented. Thelast step con-
sumes O(L) steps. Thus, the complexity of the procedure is dom-
inated by the second step, which is higher than that of the discrete
convolution (Equation 4) by afactor of log(L).

In the o-discrete method, L does not depend on T. The trade-off
between accuracy and computational cost can be easily controlled
by selecting an e, without considering network size and other problem-
specific parameters. Consequently, although the o.-discrete method
ismoretime-consuming than b-discretefor the sameL, the extracom-
putational overhead could be offset because a-discrete may lead to
asmaller L.
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Extreme-Dominance Approximation

Because the number of FSD-admissible paths may grow exponen-
tially, it is necessary in large-scale applications to restrict the size
of admissible sets to make the FSD-L C algorithm computationally
viable. Miller-Hooks does not allow the number of admissible paths
to exceed a predetermined upper bound, and any extra admissible
paths are removed, arbitrarily or according to a heuristic rule (25).

Nie and Wu's approximate algorithm is based on the assump-
tion that dynamic programming appliesto FSD-optimal paths (28).
In this method, paths that are not FSD-optimal are excluded from
further consideration. In other words, a path is retained only if it
contributesto the Pareto frontier. Henig callsthis heuristic method
FSD—-extreme-dominance approximate (FSD-EDA) (34). FSD-EDA
offers much better complexity than FSD-L C because it [imits the
number of admissible pathsto L.

Thefollowing display shows how this heuristic method isimple-
mented using the o.-discrete method (b-discrete can beimplemented
similarly [28]). Let 6(K) denote the total number of discrete points
o.=te, where vis(or) = v'S(ov) [i.€., v'S(0r) contributes to the frontier at
0]. Thus, if 6(k”) = 0, path k' is not FSD-optimal. Also, recall that
K'S(ar) is the path associated with the inverse Pareto frontier at o.

FSD-CHECK procedure
Inputs: A new path I'S, aset of current FSD-admissible paths
I's, and Pareto frontier function vs.
Return: A Boolean value FSD indicating whether | *is FSD-
admissible.
Step 0. Set FSD = TRUE, set 6(1) =0, st Q' =@ (Q’ isthe set
of pathsthat are currently FSD-admissible but not FSD-optimal).
Step 1. Update Pareto frontier and identify Q'.
Foreacha.=0, ¢, 2¢, ..., Le do
Set K =K"(a). If vi¥(ar) < v'(o): update
V(o) = Vi), k() = IS, 6(1) = (1) + 1, 6(K") = o(K") —
1. 1f 6(k®) = 0, set Q' = Q'UK",
End for.
Step 2. If Extreme-Dominance, go to Step 3; otherwise, go
to Step 4.
Step 3. Deleteall pathsinQ'. If 6(1") =0, return FAL SE; oth-
erwise; return TRUE.
Step 4. While LR = TRUE and Q' is not empty, do
For each path K*in Q’ do: set n;=0, n,=0, n,=0.
Foroo=0,¢€,2e,..., Le and if (n,=0or ng=0) do
If vi%(0) < Vis(a), set ng=ny+1; elseif v{%(o) = vif(or),
Ne=n.+1; else, ny=n, +1.
End for.
Ifn=0,set LR=FALSE; elseif ny=0, set I'* = E—
End while.

The most time-consuming pairwise comparison of distribu-
tion functions—Step 4, which consumes at most O(Ln"™) steps—
is avoided in the procedure. Because the total number of FSD-
admissible paths cannot exceed L, the complexity of FSD-EDA is
pseudo-polynomial, that is, O(mL®) for b-discrete and O(mL3logL)
for a-discrete. Although the procedureis computationally appealing,
FSD-EDA does not necessarily obtain the correct Pareto frontier
functions. Intheworst case, it isunclear whether the algorithm can
identify at least a subset of FSD-admissible paths. The authors’
preliminary resultsindicate that FSD-EDA produces good approx-
imations of Pareto frontier functions despite its theoretical defi-
ciency (28). Inthis paper, thevalidity of FSD-EDA isfurther tested
using different networks and discretization schemes.
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Cycle Check

As proven previously, FSD-admissible paths must not contain any
cycles (28). This property aso holds in the time-dependent case,
provided that time-varying probability density functions satisfy
certain stochastic first-in, first-out conditions (31). Acyclicity can
be used in the FSD-L C algorithm to inspect anew path generated
from Step 2. Specifically, whenever path k' is extended to nodeii,
one should check whether i isaready contained in kis. This extraoper-
ation may be worthwhile, because once a cyclic path is allowed to
enter Step 2 of the FSD-L C algorithm, eliminating it may take up to
O(L?+ n™L) steps. Let w(l’%) be a subpath operator, namely, o(l’) =
IP*andjpe A. A complete cyclecheck can be performed asfollows.

CYCLE-CHECK Procedure

Inputs: Path I’ and node i such that ij € A.

Return: A Boolean value CR indicating whether i has been
traversed by I,

Step 0. Set 1= (1), if p=i, CR =TRUE, stop; elseif p=s,
CR =FAL SE, stop; otherwise go to Step 1.

Step 1. Setj =p, goto Step 0.

This operation consumes at most O(n) steps. In sparse networks,
many cyclesaredirect, that is, they involve only adjacent links (e.g.,
i — j —i). Therefore, checking for only these direct cycles till can
eliminatemany if not most cyclic paths but is more computationally
efficient. Implementation of thisheuristic cycle check isthe same as
the CY CLE-CHECK procedure except that Step 1 isignored. How-
ever, whether this approximate method will improve overall com-
putation performance remainsto be verified using numerical results
because it does not exclude al cyclic paths.

NUMERICAL RESULTS

Comprehensive numerical experiments are conducted in this sec-
tion to compare different discretization schemes (o-discrete vs.
b-discrete), examine the sensitivity of the practical performance of
the FSD-L C and FSD-EDA algorithmsto network size and density,
and test theimpact of various cycle-check strategies. The a gorithms
were coded using MS-C++ and tested on a Windows XP (64-bit)
workstation with two 3.00-GHz Xeon centra processing units (CPUS)
and 4 GB of RAM.

Comparison of Two Discretization Schemes

The FSD-L C agorithm was implemented using both «-discrete
and b-discrete schemes and tested on a real road network in the
Chicago area that has 933 nodes and 2,930 links. The network,
known as Chicago Sketch, has been used to test traffic assignment
problems (35).

Link distributions in this experiment are assumed to follow a
Gammaor auniform distribution. Although real travel times may
follow neither distribution, the purposeisto reveal the impact of
the shape of the distribution function on the performance of the
discrete methods. The probability density function of the Gamma
distributionis

1 K-1-X/0
P (X) = oT) x"e ©)
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where 0 and k are parameters and T'(:) is the Gamma function. The
mean and variance of a Gamma distribution are «8 and k62, respec-
tively. In the present experiment, k¥ and 6 are generated randomly
using auniform distribution for &l links; specificaly, 6 «< U(0.8,3.5)
and K < U(1.0, 2.5). Thus, themean and standard deviation of link tra-
versd timesarewithin theranges[0.80, 8.75] and [0.80, 5.53], respec-
tively. For uniform distribution p;(x) = /(U-L), L isfixed a 0 and
U israndomly drawn from [3.5, 10]. Thelength of theanalysis period
T for the b-discrete method is set to 100, which was found through
trial and error to be large enough to guarantee trips on admissible
paths to be completed with a probability close enough to 1.0.

Four b-discrete schemesare considered, inwhich T isdivided into
L =100, 200, 500, and 1,000 discrete intervals (corresponding to
¢=1,0.5,0.2,and 0.1, respectively) named SchemesB-I1, B-11, B-I11,
and B-1V, respectively. In addition, three o-discrete schemes were
tested: e = 2%, 1%, and 0.5%, corresponding to L = 50, 100, and 200
and named SchemesA-1, A-I1, and A-I11, respectively. Because B-1V
hasthehighest resolutionin all schemes, it was used asthe benchmark
scheme against which approximation errors of other schemes were
evaluated.

The FSD-L C algorithm wasrun first to find FSD-admissible paths
for Destination 933 using al| seven schemes. Pareto frontier functions
of path travel times for origin—destination (O-D) pair (1, 933) are
shown, with inverse Pareto functions generated from the o.-discrete
method inverted for comparison, in Figure 1. Asexpected, the higher
the resolution of adiscretization scheme, the closer its Pareto fron-
tier isto the benchmark. Interestingly, approximation errorstend to
underestimate the on-time arrival probability in all cases. Thisfind-
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FIGURE 1
(c, d) Gamma distribution.
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ingisgood newsfor risk-aversetravelers becauseit keepserrorson
the safe side. Second, for the same L, approximation errorsfromthe
o-discrete scheme seem smaller. The frontier produced by A-111 (L =
200) iscloseto the benchmark for either distribution (Figures 1b and
1d). However, the a-discrete method leads to larger errors when
desired probabilities are close to 1.0 or 0.0. For example, the fron-
tier of Scheme A-l iscomparableto that of B-111 when0.1< o< 0.6,
whereas a much larger discrepancy is observed between the two
beyond that range. The reason may bethat someb} (Equation 5) are
overestimated (or underestimated) when te iscloseto O (or 1). This
phenomenon is more prominent in Gamma distribution, probably
because of itslong tail.

For further comparison, the FSD-L C algorithm wasrun for 10 ran-
domly selected destinations; average performance indexes for each
scheme arereported in Table 1. To quantify the discrepancy between
thefrontiers of schemes x andy, overall maximum gap is defined as
A3, =sup{max(lus(b) - ui(b)|  Vbe A),VieN} (10)
where ui-) isthe Pareto frontier function between i and sfor scheme
x. Because Figure 1 suggests that the relative discrepancy may vary
for different on-time probabilities, the gapswere cal cul ated separately
intwo intervalsof T: A, =[0, 60] and A, = (60, 100).

Results reported in Table 1 confirm the authors’ previous obser-
vationsthat, on average and with the same L, the a-discrete method
produces more accurate frontiers. One possible explanation is that
o-discrete has more “ effective” support pointsto represent link dis-
tributions in the present experiments. In the b-discrete method, a
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Comparison of Pareto frontiers for 0-D Pair (1, 933) using Scheme B-IV as benchmark: (a, b) uniform distribution and
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TABLE 1 Computational Performance of Different Discretization Schemes on Chicago Sketch
b-Discrete o-Discrete
Scheme B-I B-II B-11 B-1ve A-l A-ll A-lll
Gamma Distribution
CPU time® 1.45 6.94 4354 165.51 6.65 3392  180.46
Avg [T 5.25 6.67 7.40 7.14 332 3.62 4.08
Max || 23.80 3150 34.20 3170  19.90 21.00 2350
A T<60
Avg A, 0.291 0.134 0.034 0.063 0.040 0.020
Max AS, 0.462 0.217 0.055 0.257 0.085 0.059
A, 60 <T<100
Avg A, 0.116 0.047 0.011 0.063 0.053 0.022
Max AS, 0.464 0.211 0.052 0.254 0.123 0.066
Uniform Distribution
CPU time 454 19.16 157.96 506.57 1.98 10.29 41.29
Avg || 10.67 13.48 16.29 16.08 1.67 1.68 171
Max [T] 44.10 58.40 58.40 60.90 8.40 7.90 7.70
A T<60
AVg ALy 0.336 0.159 0.041 0.045 0.035 0.013
Max A%y 0.528 0.255 0.066 0.192 0.062 0.040
A 60<T<100
AVg ALy 0.142 0.058 0.013 0.045 0.030 0.011
Max A%y 0.557 0.266 0.068 0.190 0.093 0.044

2All frontiers are compared with the frontier of Scenario B-IV.

"CPU times are measured in seconds.

°Avg |T%| (or max |T%|) refers to the average (or maximum) number of FSD-admissible paths for all nodes.

support point at b isnot effective when F(b) isclose enoughto 1.0 or
0.0; in fact, more than 80 of 100 such support points can be ineffec-
tive in the b-discrete method. In contrast, most discrete pointsin
o-discrete are effective.

For the b-discrete method, when L is increased from 100 to
200, 500, and 1,000, CPU timesincrease 4.8, 30.0, and 114.1 times
(Gammadistribution) or 4.2, 34.8, and 111.6 times (uniform distri-
bution), respectively. For a-discrete, when L isincreased from 50
to 100 and then 200, CPU timesincrease 5.1 and 27.1 times (Gamma
distribution) or 5.2 and 20.9 times (uniform distribution), respec-
tively. Thesetrendsroughly agree with the previousanalysis, which
indicated that the complexity increaseswith O(L?) for b-discrete and
O(L?logL) for the a-discrete method. Because the number of FSD-
admissible pathsa so growsdlightly when L increases, the actual grow
rate of CPU timesis higher than the prediction of the above bounds.

For the Gammadistribution, the b-di screte method runsfaster than
o-discretefor similar L values, partly becausethe American Concrete
Institute (ACI) procedure needs extra O(logL) steps for sorting.
Another reason has to do with an implementation detail. In the
b-discrete method, the comparison between CDFs (conducted in the
FSD-CHECK procedure) isterminated if any one gets close enough
to 1 and adominance relationship holds. Because these conditions
could be met well before b reaches the upper bound T, the cost of
path comparisons may be lower in the b-discrete method than in the
o-discrete method if L isthe same.

Interestingly, the uniform distribution results listed in Table 1
appear to be conflicting; specifically, the o-discrete method ran con-
sistently faster. A close look revealsthat for auniform distribution,
fewer FSD-admissible pathswere solved by the a-discretethan by the

b-discrete method. To reveal why this happens, the distribution func-
tions of 42 FSD-admissible pathsfor O-D pair (547, 722) were plot-
ted, generated from Scheme B-I, with the frontier of the benchmark
scheme B-1V (Figure 2a). In comparison, only one FSD-admissible
pathisidentified from SchemeA-II (Figure 2b). Figure 2a showsonly
one nondominant path within theinterval 0.01 < o < 0.09—the path
alsofound by the o.-discrete method. Other 41 FSD-admissible paths
arenondominant intheinterval 0.99 < o, < 1 (40 paths) or theinterval
0<0:<0.01 (1 path). Because no support point existsin thetwo inter-
valsin Scheme A-ll (note that e = 0), the o-discrete method misses
those 41 nondominant solutions. However, those missed paths are
almost useless in practice because few travelers would be sensi-
tive to an improvement of less than 1% on-time arrival reliability.
More important, with only 1 admissible path, the frontier generated
from Scheme A-I1 turns out to be much more accurate than that from
Scheme B-I, which consists of 42 admissible paths.

In summary, resultsindicate that the o.-discrete method isacom-
petitive alternative to the b-discrete method. It not only makes it
possible to apply the FSD-L C algorithm to large networks but also
provides areasonabl e approximation with comparable computational
expense.

Impact of Network Size and Density

Thisexperiment was designed to test how network size (n, number of
nodes) and density (myn, where misthe number of links) affect FSD-
LC and FSD-EDA performance. A random network generator was
used to create a sequence of grid networks of various sizes (n and m
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FIGURE 2 CDFs of FSD-admissible paths between 0-D Pair (547,
722) (L = 100).

of those networksarelisted in Table 2). Gammadistribution isused to
model random travel times, with the same setting of 6 and « from the
previous section. Only the a-discrete method (e = 1%) was used in
this experiment, because the b-discrete method is computationally
demanding for large networks. For example, asinglerun requiresmore
than 2 h to finish using b-discrete for a50 x 50 network in which both
T and L must be set to 500 to achieve a reasonable approximation.
For each network listed in Table 2, the FSD-LC and FSD-EDA
algorithms were run 10 times for randomly selected destinations.
Average performance indexes are reported in Table 2. The overall
maximum gap A defined in Equation 10 is used to measure the dif-
ference between the Pareto frontiers produced by the two algorithms
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(note that x and y in Equation 10 now refer to different algorithms
instead of different schemes).

First, experimental results suggest that for either algorithm, [T
does not increase exponentially with n, in agreement with results
reported in previousstudies (25). Actualy, [T growsamost linearly
with n in the present test. Results also show that the relationship
between CPU times and n can befitted by using a quadratic function
for both algorithms (measured in seconds). Specificaly,

CPU, = 0.0003n* - 0.5623n + 184.97
CPUgp, = 0.000050° — 0.0506n —14.944

The above formulae may be valid only for networks with similar
topology.

Second, the FSD-EDA a gorithm outperformsthe exact algorithm
in CPU times, especialy for large networks (Table 2). It is almost
five times faster, on average, for the 70 x 70 network. Apparently,
thiscomputational advantageisachieved becausethe FSD-EDA ago-
rithm operateson asmaller set of FSD-admissible paths. Nevertheless,
even though it ignores many admissible paths (e.g., it identifiesonly
one-quarter of all admissible paths for the 70 x 70 network), the
FSD-EDA algorithm generates good approximates of the Pareto
frontier. In al test scenarios, the maximum gap between the fron-
tiersisalwayslessthan 0.001, corresponding to no more than 0.1%
of on-time arrival probability.

Next, theimpact of network density (nvn) is examined on the per-
formance of the FSD-L C algorithm. Networks with different mwere
generated by adding extralinks to the 20 x 20 and 30 x 30 grid net-
works from the first experiment (Table 3). Similarly, 10 destinations
were randomly selected for each network and solved using the FSD-
L C agorithmto obtain average performanceindexes. The CPU times,
admissible path sizes, and number of cross-comparisons between
paths also are reported in Table 3.

The most interesting finding from Table 3 isthat CPU timesand
the number of FSD-admissible paths (JT*) do not increase mono-
tonically with m. Instead, these indexesfirst increase but then begin
to drop once m exceeds a certain threshold. For the 20 x 20 net-
work, when mincreases from 4,668 to 5,972, both |T™ and CPU
times are reduced by nearly 10%. [T increases initially when the

TABLE 2 Computational Performance of FSD-LC and FSD-EDA for Networks of Various Sizes

Network Algorithm CPUtimes  Avg I Max || AvgAy® Max A3,
70x 707 FSD-LC 5,665.10 92.37 2,013.20 4.23E-04 6.47E-04
#links: 19,320 FSD-EDA 1,087.17 23.46 163.90

60 x 60 FSD-LC 2,301.55 56.45 1,051.50 3.28E-04 5.34E-04
#links: 14,160 FSD-EDA 651.92 18.29 117.30

50 x 50 FSD-LC 921.93 39.30 751.70 4.97E-04 6.77E-04
# links: 9,800 FSD-EDA 343.75 15.67 102.90

40 x 40 FSD-LC 261.61 18.12 253.70 2.07E-04 3.82E-04
#links: 6,240 FSD-EDA 136.31 9.59 65.20

30x 30 FSD-LC 82.62 10.52 118.56 2.22E-04 4.32E-04
# links: 3,480 FSD-EDA 53.24 6.67 40.89

20x 20 FSD-LC 14.04 4.38 27.11 1.18E-04 1.87E-04
#links: 1,520 FSD-EDA 11.72 3.65 17.78

10x 10 FSD-LC 1.46 2.09 6.89 2.92E-05 3.66E-05
# links: 360 FSD-EDA 1.42 2.00 6.22

#70 x 70 grid network means there are 4,900 nodes in the network.
PAs, refers to the overall maximum gaps between two frontiers solved by FSD-LC and FSD-EDA.
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TABLE 3 Computational Performance of FSD-LC Algorithm for Networks with Various Densities

20 x 20 Network 30 x 30 Network

# Links CPUTime  #PathsCompared  Avg|T™| Max |T| #Links CPU Time # Paths Compared Avg || Max |T's|
1,250 12.39 17,109 3.86 25.20 3,480 48.90 114,017 6.63 60.00
3,120 68.51 85,185 5.83 33.70 6,180 240.86 474,984 9.67 89.11
4,668 143.02 177,388 5.50 35.00 10,648 369.60 490,837 6.65 60.00
5,972 125.36 123,372 4.98 31.50 13,772 429.78 498,049 6.61 49.00
6,996 112.83 99,452 4.34 24.50 16,476 342.13 350,482 5.88 38.67

network becomes denser, apparently because more paths are avail-
ablein adenser network. However, theincrease in density also has
a countereffect: more shortcuts will appear in a denser network,
which may dominate many otherwise admissible paths. As aresult,
even though the total number of pathsalwaysincreases, [T may not.

Effects of Cycle Check

Cycle check introduces extra costs but could potentially reduce the
number of path comparisons. This experiment attempts to identify
the effects of various cycle-check strategieson the performance of the
FSD-LC agorithm. Two strategies are considered: full cycle check
(all nodes on the current path are checked to make sure the new path
does not form any cycle) and direct cycle check (which attemptsonly
to excludethedirect cycleinvolving adjacent links). Thesetwo strate-
gieswere compared with the no—cycle check scenario on three sets of
networks: two sets of random networkswith variousdensities (20 x 20
and 30 x 30) and a set of grid networks with similar density but dif-
ferent sizes. The FSD-L C agorithm was used in this test with Dis-
cretization Scheme A-I1. The average performance indexes obtained
from 10 runsfor each network arelisted in Tables4 and 5.

Overdll, the expense of cycle check pays off well. The algorithm
isconsistently accelerated by either cycle-check strategy, with up to
30% CPU time savings (Tables 4 and 5). Moreover, the two strate-

giesdemonstrate similar performance, apparently because morethan
90% of excluded cyclesare direct cycles, regardless of network size
and density. Inlarger networks (n > 2,000 nodes), direct cycle check
appears to lead full cycle check with a modest margin (2% to 3%).
Thusin practice, performing adirect cycle check may be sufficient.

Therelative CPU time savings of cycle check isquite stablewhen
the network sizeincreases but the density does not change (nvVn = 4;
Tables 4 and 5). In all six networks (with the number of nodes
increasing from 100 to 3,600), the FSD-LC algorithm runs about
30% faster with cycle check. However, this relative performance
gain seemsto drop as network density increases. For example, inthe
30 x 30 networks, the percentage of CPU time savings decreases
from about 30% (when m= 3,480) to only 5% (when m= 16,476).
Thus, relative CPU time savings obtained by cycle check seemsto
depend on network density rather than network size.

CONCLUSIONS

A few implementation i ssues of approximate a gorithmswere exam-
ined for the RASP problem. A new discretization scheme called
o-discrete was proposed, as well as a corresponding procedure for
evaluating convolution integrals. This new scheme avoids a depen-
dence on problem-specific parameters such as network size and
topology and thereby better suitslarge-scal e applications. Implemen-

TABLE 4 Comparison of Various Cycle-Check Strategies by Number of Links

Full Cycle Check Direct Cycle Check No Cycle Check

#Links CPUTime #PathsCompared # CyclesAvoided CPU Time #PathsCompared # CyclesAvoided CPU Time # Paths Compared
Panel 1. Five 20 x 20 Networks

1,250 14.33 19,497 2,307 14.18 19,507 2,302 20.17 25,168
3,120 51.53 57,648 2,897 51.29 57,797 2,823 58.51 65,026
4,668 83.29 86,041 3,329 83.67 86,956 2,872 91.03 94,528
5,972 79.63 73,832 2,023 79.36 74,163 1,857 84.04 78,342
6,996 70.20 56,207 1,786 69.42 56,341 1,719 73.86 59,959
Panel 2. Five 30 x 30 Networks

3,480 49.44 113,980 7,384 48.90 114,017 7,365 68.20 133,173
6,180 241.10 473,219 16,146 240.86 474,984 15,268 280.73 547,067
10,648 368.76 487,593 13,407 369.60 490,837 11,790 399.77 536,163
13,772 430.36 495,286 12,530 429.78 498,049 11,152 458.19 535,445
16,476 344.82 350,078 8,666 342.13 350,482 8,464 363.43 372,348
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TABLE 5 Comparison of Various Cycle Check Strategies by Number of Nodes

89

Full Cycle Check Direct Cycle Check No Cycle Check
#Nodes CPUTime #PathsCompared # CyclesAvoided CPUTime #PathsCompared #CyclesAvoided CPUTime # PathsCompared
10x 10 147 1,124 220 1.46 1,124 220 2.03 1,566
20x 20 13.57 20,598 2,175 14.04 20,607 2,170 19.08 25,548
30x 30 79.61 329,720 11,944 78.86 329,927 11,840 110.19 364,970
40 % 40 264.14 2,455,149 40,772 261.61 2,455,400 40,658 369.85 2,670,260
50 x 50 952.04 18,572,455 123,443 922.33 18,572,757 123,296 1,289.61 19,349,234
60 x 60 2,357.32 71,435,620 5,929 2,301.55 69,375,765 536,156 3,296.20 75,604,585
Note: Panel 3. Six grid networks with different number of links (asin Table 2).
tation strategiesintended to improve the computational performance REFERENCES

of the existing label-correcting algorithms (an approximate method
based on extreme dominance and two cycle-check strategies) also
were presented. Extensive numerical experimentswere conducted to
test the effects of these implementation strategies.

The findings from these experiments are summarized as follows:

e |n general, the a-discrete method produces better approxima-
tion results than the b-discrete method with comparable computa-
tional costs. It typically identifies a smaller set of FSD-admissible
paths, but most missed paths appear not to substantially affect the
resulting Pareto frontier functions and therefore appear would be of
little impact in practical applications.

e EDA offerssignificant computational benefits. The errorsfrom
this approximation seem to be negligiblefor most practical purposes.

e Thenumber of FSD-admissible pathsincreasesamost linearly
with network size. The agorithm runsin polynomial time. In particu-
lar, the relationship between the consumed CPU time and the number
of nodes can be fitted with a quadratic function for grid networks.

e Cycle check improves overall computational performance. In
grid networks, it might be sufficient to exclude direct cycles because
they seem to constitute most existing cycles. Also, the relative ben-
efit of cycle check depends on the density rather than the size of the
network.

The b-discrete method allows one to decompose the time dimen-
sion and thus reduce atime-dependent problem into astatic one (28).
However, this property does not hold for the o-discrete method
because the support points of the distributions do not correspond to
adeparture time interval like in b-discrete. As a result, developing
efficient o-discrete implementations in a time-dependent environ-
ment is a challenging issue that warrants further investigation.
Another direction for future research isto compare EDA with other
heuristic methods, such as those proposed by Miller-Hooks (25).
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