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Abstract

Reliable route guidance can be generated from solving the reliable a priori shortest path prob-
lem, which finds paths that maximize the probability of arriving on time. This paper aims to
demonstrate the usefulness and feasibility of such route guidance using a case study. A hybrid
discretization approach is first developed to improve the efficiency in computing convolution in-
tegral, which is an important and time-consuming component of the reliable routing algorithm.
Methods to construct link travel time distributions are discussed and implemented with the data
from the case study. Particularly, the travel time distributions on arterial streets are estimated
from linear regression models calibrated from freeway data. Numerical experiments demonstrate
that optimal paths are substantially affected by the reliability requirement in rush hours, and that
reliable route guidance could generate up to 10 - 20 % of travel time savings. The study also veri-
fies that existing algorithms can solve large-scale problems with modest computational resources.

Keywords: reliable a priori shortest path problem; route guidance; linear regression; case study;
travel time distribution
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(a) Interstate 94/90 from Chicago (Ohio St.) 

     to Ohare International Airport (source: Google Map)

(b) Travel Time Distribution for that corridor 

      during morning rush hour (6-10 AM)

48.3 minutes

Cumulative probability = 90%

Figure 1: An illustration of travel time variances in the Chicago area

1 Introduction

Motorists are becoming increasingly dependent on route guidance to plan unfamiliar trips. Just
like a search engine can help internet users to locate useful information on web, a route guidance
systems find best routes for motorists from a complex road system. As of today, many personal
vehicles have built-in or adds-on GPS-based route guidance systems which can provide en-route
guidance. Some of these equipments can even receive and make use of real-time traffic informa-
tion. In the absence of such an in-vehicle unit, a priori driving directions (e.g. those provided by
Internet-based map engines) are often used in trip planning.

Most existing route guidance systems assume that the road travel times are deterministic.
When the stochastic nature of the system is acknowledged, selecting the route that is the fastest
on average is often believed to be the right strategy. However, our day-to-day experience suggests
just the opposite: not only is travel time random, but also a route with the least expected travel
time is not always desirable due to, for instance, large variances. This is especially true in large
metropolitan areas where random disruptions of various sorts consume a large portion of the
total journey time. Figure 1 shows an example from the Chicago area. The right panel in the
figure displays the empirical distribution of travel times observed in weekday morning rush
hours on a stretch of freeway that connects Chicago downtown to O’hare International Airport
(shown in the left panel), the second busiest airport in the US. Note that the travel times vary
from as short as 15 minutes to as long as 80 minutes in this period of weekdays. In light of the
magnitude of the variance, it is not surprising that the travel time estimated by existing route
guidance systems often turns out to be wildly inaccurate. Moreover, the figure also shows that if
a traveler wish to arrive at the airport on time with a 90% chance, 48 minutes has to be budgeted
for travel, which is more than 50% more than the mean travel time (31 minutes). Existing route
guidance systems do not allow users to incorporate reliability into route choice. Nor are they
able to inform users with reliability information of the recommended routes. Consequently,
these systems essentially leave it to motorists to choose between running the risk of being late
or budgeting a large buffer time, of which much is likely to be wasted. Reliable route guidance
studied in this research addresses precisely these issues.
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This paper studies reliable route guidance from an application point of view. The theoretical
aspects of the reliable routing problem, including formulations and solution algorithms, have
been developed in the literature (Frank 1969, Miller-Hooks 1997, Nie & Wu 2009b) and therefore
are not the present focus. Nevertheless, a critical algorithmic issue, namely the discretization
scheme used for evaluating convolution integrals, is further developed in this study. In particu-
lar, a hybrid approach is proposed which combines the advantages of the existing schemes (see
Section 3 for details). Three key issues pertinent to application and deployment are addressed,
using the Chicago metropolitan region as a case study. We first discuss how the necessary in-
puts, particularly empirical travel time distributions on both freeways and arterial streets, can be
obtained from various sources of traffic data, such as loop detectors and electronic toll transpon-
ders. Due to the lack of observations on arterial streets, linear regression models have to be used
to estimate travel time distributions on them. The case study is focused on examining the ben-
efits of reliable routing. We find that reliable route guidance could generate up to 10 - 20 % of
travel time savings for motorists who travel during rush hours and seek high reliability. Another
noteworthy finding is that highly reliable routes often tend to prefer major arterial streets to
expressways in rush hours. Last but not least, our experiments indicate that producing reliable
route guidance is computationally viable even on very large regional networks, despite the fact
the underlying optimization problem has a non-deterministic polynomial complexity.

For the remainder, Section 2 reviews the literature of reliability routing guidance. Section
3 presents the formulation and solution algorithms, and describes the newly developed hybrid
discretization scheme. The case study is presented in Section 4, as well as the preparation of
input data including travel time distribution. Section 5 reports and discusses experiment results,
and Section 6 concludes the study with a summary of findings.

2 Literature review

Route guidance algorithms direct vehicles from an origin to a destination along a path that is
considered “optimal” one way or another. Depending on whether or not the guidance is coor-
dinated by a central control unit, the algorithms can be classified as “centralized” or “decentral-
ized”. They can also be labeled as “adaptive” or “a priori”, according to whether or not en-route
re-routing is allowed. Two other factors that are often used in classification are dynamics (i.e., if
travel time varies over time of day) and uncertainties (i.e., if travel time is random). This research
considers decentralized, a priori route guidance for stochastic and static networks 1. The focus is
to incorporate travel reliability as an integrated objective of route guidance. By static, we mean
that the travel time distributions remain constant within each routing process. We have to restrict
to the static case not because of methodological limitations 2, but rather due to data availability.
The static label does not exclude, however, the possibility of changing travel time distributions
according to time-of-day from one routing process to another. In the case study, reliable routes
generated for morning rush hour are likely to be different from those for evening peak period.

When uncertainty is concerned, “optimal” routing has many different meanings. A classic
definition considers a routing strategy optimal if it incurs the least expected travel time (LET).
The definition of optimality in this paper has to do with reliability, recognizing that an LET route
(or policy) may be subject to high risks and therefore is not desirable to a risk averse traveler.

1Corresponding “adaptive” problems are related to “a priori” counterparts, and are usually simpler to solve.
2Note that both Miller-Hooks (1997) and Nie & Wu (2009b) deal with “dynamic” version of the problem.
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Reliability-based stochastic routing has been studied extensively, with the majority of the lit-
erature focused on a priori path problems. As to ”optimality”, different researchers give different
definitions. In his seminal work, Frank (1969) defines the optimal path as the one that maxi-
mizes the probability of realizing a travel time equal to or less than a given threshold. An exact
method is provided to compute the continuous probability distribution for the travel time on
shortest paths. Mirchandani (1976) presents a recursive algorithm to solve a discrete version of
Frank’s problem. However, both methods are suitable only for small instances since they require
enumerating all paths. Sigal, Alan, Pritsker & Solberg (1980) suggests using the probability of
being the shortest path as an optimality index. Analytical formulas are given to evaluate such
an index (assuming that all paths are enumerated) which involves the calculation of multiple
integrals. The expected utility theory of von Neumann & Morgenstern (1967) has also been used
to define path optimality. It has been shown (Loui 1983, Eiger, Mirchandani & Soroush 1985)
that the Bellman’s principle of optimality can be used to find maximum-utility paths when affine
or exponential functions are used. For quadratic utility functions and/or special distributions
that are uniquely determined by the first two moments, Loui (1983) showed that the maximum
expected-utility problem is reduced to a class of bi-criteria shortest path problems that trade off
the mean and variance of path travel times. These bi-criteria problems can be formulated using
generalized dynamic programming (DP) (see, e.g., Carraway, Morin & Moskowitz 1990) based on
the non-dominance relationship. More general nonlinear utility functions may be approximated
by piecewise linear functions (see Murthy & Sarkar 1996, Murthy & Sarkar 1998). The mean-
variance tradeoff can be treated in other ways. For example, Sivakumar & Batta (1994) adds an
extra constraint into the shortest path problem to ensure that the identified LET paths have a
variance smaller than a benchmark. In Sen, Pillai, Joshi & Rathi (2001), the objective function of
stochastic routing becomes a parametric linear combination of mean and variance. In either case,
DP cannot be applied. Instead, nonlinear or integer programming solution techniques must be
used. Stochastic routing has also been discussed in the context of robust optimization, that is,
a path is optimal if its worst-case travel time is the minimum (Yu & Yang 1998, Montemanni &
Gambardella 2004). However, such robust routing problems are NP-hard even under restrictive
assumptions (Yu & Yang 1998). Miller-Hooks & Mahmassani (1998a) defines the optimal path in a
stochastic and time-varying network as the one that realizes the least possible travel time. Miller-
Hooks (1997) and Miller-Hooks & Mahmassani (2003) explore other definitions of optimality
based on first-order stochastic dominance (FSD) and definite stochastic dominance. Label-correcting
algorithms are proposed (Miller-Hooks 1997, Miller-Hooks & Mahmassani 1998c, Miller-Hooks
& Mahmassani 1998b) to find non-dominant paths under the stochastic dominance rules. Rec-
ognizing that the exact algorithm does not have a polynomial bound, heuristics are considered
(Miller-Hooks 1997) which attempt to limit the size of the retained non-dominant paths by a
predetermined number. As noted in Miller-Hooks (1997) (Chapter 5), however, these heuristics
may not identify any non-dominant paths. Reliability has also been defined using the concept of
connectivity (Chen, Bell, Wang & Bogenberger 2006, Kaparias, Bell, Chen & Bogenberger 2007).
This approach models reliability as the probability that the travel time on a link is greater than a
threshold. Accordingly, the reliability on a path is the product of link reliability (assuming inde-
pendent distributions). A software tool known as ICNavS was developed based on this approach
(Kaparias et al. 2007).

This research is built upon the priori work of (Nie & Wu 2009b, Nie & Wu 2009a, Wu &
Nie 2009), which defines the objective of routing as maximizing the probability of arriving
on-time. This definition of optimality is identical to that of Frank (1969) and closely related

5



Table 1: Notation
s the destination of routing
cij travel times on link ij which is a random variable
pij(·) probability density function of cij
πij(·) cumulative distribution function (CDF) of cij
krs path k that connects origin-destination path r− s.
Krs a set of all paths that connect r and s
urs

k (b) the maximum probability of arriving at s through path krs

on-time or earlier, departing from r with a time budget b.
urs(b) the maximum probability of arriving at s through any path krs ∈ Krs

on-time or earlier, departing from r with a time budget b.
Γrs FSD-admissible paths between the OD pair rs
Ωrs FSD-optimal paths between the OD pair rs

to the concept of first-order stochastic dominance (e.g. Hadar & Russell 1969, Miller-Hooks &
Mahmassani 2003). While this definition seems to intuitively address the perception of travel
reliability, solving the resulting routing problem on real networks has been considered imprac-
tical because it requires path enumeration. Nevertheless, this research is built on the premises
that recent advances in algorithmic development warrants a fresh look at this once “intractable”
problem. We shall first present the formulation of the problem and its solution algorithms in the
next section.

3 Problem formulation and a solution algorithm

Consider a directed and connected network G(N ,A,P) consisting of a set of nodes N (|N | = n),
a set of links A (|A| = m), and a probability distribution P describing the statistics of link
travel times. Table 1 lists other notation to be used frequently. This paper does not consider
the correlations among different cij, since these are difficult to establish from existing data. As
mentioned before, although pij does vary from one period of time to another, it is not allowed to
change over time within each period. Technically, thus, the reliable shortest problem considered
herein is a static version of those studied in (Nie & Wu 2009b) and (Nie & Wu 2009a).

The problem of providing reliable route guidance can be formulated as the so-called reliable
a priori shortest path (RASP) problem. To present the formulation, we first need to define the
first-order stochastic dominance (FSD) and the associated admissibility.

Definition 1 (First-order stochastic dominance (FSD) Â1) Path krs dominates path lrs in the first
order, denoted as krs Â1 lrs, if the CDF of πrs

k never lies below that of πrs
l and the inequality holds strictly

at least at one point.

Definition 2 (FSD-admissible path) A path lrs is FSD-admissible if ∃ no path krs ∈ Krs such that
krs Â1 lrs.

The RASP problem equals the problem of identifying all FSD-admissible paths between (i, s), ∀i 6=
s (Nie & Wu 2009b). However, it is possible that an FSD-admissible path is not shortest for any
on-time arrival probability. To clarify this point, we define FSD optimality in the following.
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Definition 3 (FSD-optimal path) A path krs is FSD-optimal if 1) it is FSD-admissible and 2) it pro-
vides the highest on-time arrival probability from node r to node s for some time budget b.

We shall denote the set of FSD-admissible and FSD-optimal paths between the OD pair (r, s)
with Γrs and Ωrs, respectively. Note that Ωrs is the subset of Γrs by definition. At any node i ∈ N ,
define uis(b) ≡ max{uis

k (b), ∀kis ∈ Ωis, ∀b}. The function uis(·) is called Pareto frontier function at
node i, which constitutes optimal solutions of the RASP problem.

The problem of finding all FSD-admissible paths can be solved using the following label cor-
recting algorithm (see Nie & Wu (2009b) for the proof of convergence and a complexity analysis):

Algorithm FSD-LC

Step 0 Initialization. Let 0ss be a dummy path from the destination to itself. Initialize the scan
list Q = {0ss}. set πss

0 (b) = 1, ∀b.

Step 1 Select the first path from Q, denoted as l js, and delete it from Q.

Step 2 For any predecessor node i of j, create a new path kis by extending l js along link ij.

step 2.1 Calculate the distribution of πis
k from the distribution of π

js
l by convolution integral

(Details are given below).

step 2.2 Compare the new path kis with current Pareto frontier. If the frontier is dominated by
kis, update the frontier with the distribution of πis

k , drop all existing FSD-admissible
paths at node i, and set Γis = {kis}, Ωis = {kis}; otherwise, further compare the dis-
tribution of the new path to those of the existing FSD-admissible paths to check FSD
admissibility. If any of the existing path dominates kis, drop kis and go back to Step
2; otherwise, delete all paths that are dominated by kis from Γis, set Γis ∪ {kis}, and
update Q = Q ∪ {kis}.

Step 3 If Q is empty, retrieve Ωis from Γis, and evaluate the Pareto frontier function uis(·), ∀i,
stop; otherwise go to Step 1.

If the random link travel time follows a continuous probability density function pij, the distribu-
tion of path travel time πrs

k can be calculated recursively from the following convolution integral

uis
k (b) =

∫ b

0
ujs

k (b− w)pij(w)dw, ∀b ∈ [0, T] (1)

where T is the largest possible travel time between any O-D pair. Typically, the convolution
integral has to be evaluated using numerical methods which involves discretization. The simplest
discretization scheme is to divide [0, T] evenly into L intervals of length φ. The corresponding
probability mass function Pij reads

Pij(b) =





∫ b+φ
b pij(w)dw b = 0, φ, ..., (L− 1)φ∫ ∞
b pij(w)dw b = Lφ

0 otherwise
(2)

Accordingly, the evaluation of convolution integral in Equation (1) is replaced with a finite sum
as follows:

uis
k (b) =

b

∑
0

ujs
k (b− φ)Pij(φ), ∀b = 0, φ, · · · , Lφ (3)
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The above method has two shortcomings. First, the cumulative function has to be evaluated up
to the predetermined upper bound T = Lφ in the convolution. Note that T should equal the
longest possible travel time between any O-D pair so that the computed distribution functions
can cover the entire domain. However, it is hard to estimate T a priori, and to bypass the
difficulty, T has to be set as an arbitrarily large number, which often turns out to be wasteful,
and sometimes prohibitively expensive. Second, the uniformly spaced discrete points are not
effective in representing heterogenous probability mass concentration. They frequently overly
represent the flat portions, while at times fail to capture the hot spots where rapid changes
take place. To address these issues, (Wu & Nie 2009) suggested discretizing T such that each
interval has the same probability mass ε < 1, which is predetermined. The scheme discretizes
the domain to L = [1/ε]− intervals, where [a]− denotes the largest integer smaller than a. Since
the domain is not uniformly discretized, however, the formula (3) is no longer applicable. Instead
an alternative numerical method was proposed in (Wu & Nie 2009) to perform the convolution.
Although this method addresses the problem of undetermined T, it still poorly responds to the
ireregular concentration of probability mass, essentially because identical probability mass is
required in each interval.

In light of the above limitation, this study adopts a hybrid approach to allow both variable
length of discrete intervals and different probability mass in each interval. The hybrid approach
starts from a set of L uniform intervals (whose length may vary from one random variable to an-
other), and computes the probability mass functions with Equation (2). However, a consolidation
procedure is incorporated to merge consecutive intervals together such that no more than one
interval has a probability mass smaller than 1/L. “Merging” two consecutive discrete intervals
means removing the boundary between them and assigning the sum of their probability masses
to the new interval. The consolidation produces a set of effective support intervals (ESI), whose
size is often much smaller than L according to our experience. Consequently, the hybrid ap-
proach brings about significant computational benefits, without compromising the accuracy and
stability of numerical convolution.

We now show how the convolution can be performed using the hybrid discretization scheme.
Consider two random variables X and Y, whose domain is represented (after discretization and
consolidation), respectively, by the following sets of break points: [x0, x1, ..., xL(X)], [y0, y1, ..., yL(Y)],
where L(X) and L(Y) are numbers of ESI. Accordingly, the discrete support points are defined
as

SX = [
x0 + x1

2
, · · · ,

xL(X)−1 + xL(X)

2
], SY = [

y0 + y1

2
, · · · ,

yL(Y)−1 + yL(Y)

2
],

and the probability mass functions are

PX = [PX
1 , · · · , PX

L(X)], PT = [PY
1 , · · · , PY

L(Y)].

The following method can be used to compute PZ for Z = X⊕Y,⊕ denotes convolution integral.

Convolution based on the hybrid discretization approach

Step 0 Set zmin = x0 + y0, zmax = xL(X) + YL(Y). Divide [zmin, zmax] into L intervals of uniform
length, and compute φ = (zmax − zmin)/L. Intialize PZ

l = 0, ∀l = 1, · · · , L.

Step 1 for i = 1, 2, · · · , L(X),

for j = 1, 2, · · · , L(Y),
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Calculate ts = SX
i + SY

j and tp = PX
i × PY

j . Define l =
[

ts−zmin
φ

]

−
, and set PZ

l =

PZ
l + tp

end for

end for

Step 2 Consolidate PZ to get effective support intervals and the associated probability mass
functions.

Finally, we note that the determination of FSD-admissibility relies on comparing CDFs. In the
hybrid discretzation scheme, the CDF of any consolidated distribution can be evaluated using
linear interpolation. Thus, FSD-admissibility can be examined at any desired resolution and is
not restricted by the discrete points used to represent distributions.

4 Input data for reliable route guidance

This section discusses issues associated with input data necessary to providing reliable route
guidance. The focus is on how to construct link travel time distributions, which, to the best of
our knowledge, are not readily available in most places. We first describe the case study and the
available data sources.

Our case study considers the Chicago metropolitan area, which is the third largest metropoli-
tan area in the US, and not coincidentally, one of the most congested cities too. According to the
latest mobility report (Schrank & Lomax 2007), an average commuter in Chicago area wasted 46
hours due to traffic congestion in 2007. Perhaps more important, the travel time in the Chicago
area seems more unreliable than any other major metropolitan areas in the US. The same mobil-
ity report indicates that an average commuter in the Chicago area has to budget 2.07 times of the
free flow travel time for an important trip (which requires 95% probability of on-time arrival), the
highest index in the country. On the other hand, Chicago has archived a rich set of traffic data
in both public and private sectors. In particular, the GCM (Gary-Chicago-Milwaukee corridor)
traveler information system (www.gcmtravel.com) broadcasts real-time traffic data collected from
loop detectors, toll transponders and other devices operated by departments of transportation in
Illinois, Wisconsin and Indiana. This system also provides (point-to-point) real-time travel time
for most toll roads in the region (known as I-PASS data).

This research uses the GCM data as the primary source for traffic data on freeways and toll
roads. The GCM data come from two main sources: loop detectors and electronic toll transpon-
ders (I-PASS), which cover freeways and toll roads respectively. Figure 2 shows the Chicago
network used in the case study, as well as the location of loop detectors and IPASS toll booths.
The network data are from the latest travel planning model prepared by the Chicago Metropoli-
tan Agency for Planning (CMAP). As revealed in Figure 2, a major problem is the lack of data
on arterial and local streets, which constitute the majority of links in the network. Recognizing
that this is a universal problem that has not yet been overcome in the current paradigm of data
collection, we estimate travel time distributions on these streets, as to be detailed in Section 4.2.
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Figure 2: The Chicago network from Chicago Metropolitan Agency for Planning
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4.1 Data for freeway and toll roads

In the GCM database, loop detectors record speed, occupancy and flow rate approximately every
5 minutes. Likewise, travel times on toll roads between two I-PASS toll booths are obtained
from in-vehicle transponders, and subsequently aggregated and written into database every 5
minutes. About 825 loop detectors and 174 I-PASS detectors (each I-PASS detector corresponds
to an origin-destination pair of toll booths) from GCM database are used in this study (see Figure
2). Specifically, the loop detector data collected from 10/10/2004 to 10/11/2008, and the I-PASS
detector data from 10/9/2004 to 7/3/2008, are employed.

We first need to identify links that are “covered” by either I-PASS detector or loop detector. To
determine which link in the CMAP network is associated with a loop detector, the coordinates
(longitude and latitude) of the detector are used to find the closest freeway link. Finding the
I-PASS covered links requires more work, which consists of two major steps. In the first, the
starting and ending points of the I-PASS detector are located in the CMAP network. The second
step identifies and marks all links used by the fastest (not shortest) path connecting the two
points. Thus, vehicles that pass two I-PASS toll booths in sequence are assumed to always stay
on the toll roads, which in most cases constitute the fastest alternative. Note that a link in the
CMAP network may be covered by more than one loop detector. In total, 765 out of 44331 links
are covered in one way or another, as shown in Figure 3.

For links covered by loop detector(s), the recorded speed in a 5-minute interval is used to
estimate link travel time for the corresponding interval, i.e.,

τd
a (t) = la/vd

a(t) (4)

where τd
a (t) and vd

a(t) are travel time and speed on link a recorded by detector d for time interval
t, and la is the link length. If for an interval, a link contains more than one recorded travel time,
the arithmetic average of calculated travel time values is taken as the nominal link travel time,
that is,

τd
a (t) =

∑d∈D(a) la/vd
a(t)

|D(a)| (5)

where D(a) is the set of loop detectors associated with link a at a given time. As for I-PASS
detectors, we need to estimate link travel times on covered link based on the recorded path
travel times for a given time period. This is a difficult exercise for two reasons. First, how the
travel delays (if there is any) experienced on a path may be spatially distributed is unknown.
Second, an I-PASS record tagged by one time interval might contribute to link travel times at
other time intervals 3. It is hard to solve either problem unless further information is available,
such as supplementary loop detector data. For simplicity, we assume that path travel times are
distributed to links proportional to their lengths, that is

τi
a(t) =

la

∑a∈krs la
crs

k (t) (6)

where krs denotes the shortest path connecting nodes r (the starting node of the link associated
with the origin toll booth) and s (the ending node of the link associated with the destination
toll booth), and crs

k (t) is the recorded travel time on the path for time interval t. While this

3Note that the time interval that identifers an I-PASS record must be tied to either the entry (origin) or exit
(designation), since the travel times between most I-PASS toll booths are longer than 5 minutes.
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Thick Blue (Loop detector)

Thin Red (I-PASS detector)

Figure 3: Covered links in the CMAP network (total covered links = 765)
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simplification would certainly introduce errors, we note that the magnitude of errors may be
alleviated when multiple I-PASS records are available for the same stretch of toll roads. Equation
(6) also implies that the travel time on a path at one time interval contributes to its covered links
for the same interval. This shortcoming is not as serious as it sounds, since eventually the travel
time data will be aggregated on a period of a coupe of hours. That is to say, as long as the
misplaced link travel times do not go into a wrong period (which is certainly possible but is
much less likely), they will not seriously distort the aggregated distributions. To summarize, the
travel time on link a at time t is given by

τa(t) =
{

τd
a (t) if loop data are available

τi
a(t) if I-PASS data are available

(7)

Once link travel times are obtained, the empirical distributions can be constructed using the
following procedure.

Construct Empirical Distribution

Step 1 Find La = min{τa(t), ∀t ∈ Λ}, Ua = min{10la/v0
a, max{τa(t), ∀t}}, where Λ is a set of

valid time intervals, and v0
a is free flow speed (or speed limit) on link a.

Step 2 Divide [La, Ua] into M intervals, and let δa = (Ua − La)/M. Find the set Dm = {τa(t)|∀t ∈
Λ, (m− 1)δa ≤ τa(t) < mδ}, ∀m = 1, ...., M

Step 3 Obtain the probability mass for each interval m using Pm = |Dm|
|Λ| .

It is noted that link travel time distribution may be affected by various factors, such as time-of-
day and seasonal effects. Conceivably, one should consider a different reliable routing decision
for rush hour and off-peak period. To address this issue, the travel time data are disaggregated
according to three key factors: time-of-day, day-of-week and season. Specifically, each day is
divided into four periods, namely, morning peak period (6 am - 10 am), mid-of-day period (10
am - 3 pm), evening peak period (3 pm - 8 pm) and off-peak period (8 pm - 6 am). Days
in a week are first grouped into weekends and weekdays. In addition, Friday, Saturday and
Sunday form individual groups because they have somewhat different travel patterns. Finally, a
year is grouped into Spring (months of March, April and May), Summer (months of June, July
and August), Fall (months of September, October, November) and Winter (months of December,
January, February). For each of the three factors, an additional group is added to address the
case of no-segmentation. For instance, the segmentation for time-of-day contains 5 instead of 4
groups: morning peak, mid-of-day, evening peak, off-peak and whole-day (no segmentation for
time-of-day). Therefore, in total, there are 5× 6× 5 = 150 possible combinations. Accordingly,
we generate 150 different distributions for each of the 765 covered links.

A comparison of travel time distributions on a sample link for the four time-of-day periods is
given in Figure 4. The results suggest that the most congested period is evening peak, followed
by mid-of-day, morning peak and off-peak. Also, the variance of the distributions increases as
the road becomes more congested. For example, the standard deviation for off-peak and evening
peak is 0.1 and 0.4 minutes, respectively.

4.2 Data for arterial and local streets

No observations are available for arterial and local streets in the CMAP network. Consequently,
the travel time distributions on these links have to be estimated indirectly. The estimation process
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involves two main steps: select an appropriate functional form, and estimate its parameters.
Travel time on freeways and arterial streets is known to closely follow a Gamma distribution

(e.g. Polus 1979). Figure 4 provides further confirmation. Gamma distributions have also been
adopted in various studies of stochastic routing problems (e.g. Fan, Kalaba & Moore 2005, Nie
& Wu 2009b). Therefore, this study adopts Gamma distribution to describe the travel time dis-
tribution on arterial and local streets. The probability density function of a Gamma distribution
is

f (x) =
1

θκΓ(κ)
(x− µ)κ−1e−(x−µ)/θ ; x ≥ µ, θ, κ ≥ 0 (8)

where θ is the scale parameter; κ is the shape parameter; µ is the location parameter; and Γ(·) is the
Gamma function which takes the following form

Γ(z) =
∫ ∞

0
tz−1e−tdt

Having selected the functional form, we proceed to show how to estimate the three param-
eters required in a Gamma distribution. We first note that the mean and variance of a Gamma
distribution are κθ and κθ2, respectively. Thus, if we know mean (denoted as u), variance (de-
noted as σ2) and µ, then κ and θ can be obtained by

θ =
σ2

u− µ
, κ = (

u− µ

σ
)2 (9)

The CMAP travel demand model (CMAP 2006) is used to estimate congested travel times on
arterial streets. Note that the planning model is designed to capture average traffic conditions
in the network for the designated time period on a typical weekday. The CMAP travel demand
model represents a classical four-step process of trip generation, trip distribution, mode choice, and
traffic assignment, with considerable modifications used to enhance the distribution and mode
choice procedures. The original CMAP model divides a day into eight periods: off-peak (8 PM
- 6 AM), pre-morning-peak (6-7 AM), morning-peak (7 - 9 AM), post-morning-peak (9-10 AM),
mid-of-day (10 AM - 2 PM), pre-evening-peak (2 - 4 PM), evening-peak (4 - 6 PM), and post-
evening-peak (6 - 8 PM). Note that in GCM data peak periods combine the pre and post periods
defined in the CMAP model. For simplification, the assignment results for the peak periods
(morning and evening) in the CMAP model are used to represent those from pre to post peak
periods. Specifically, each link obtains from the CMAP model a mean travel time for each of the
four predetermined GCM periods: morning peak, mid-of-day, evening peak and off-peak.

We postulate that the mean and variance of travel times on a link are related to its free
flow travel time τ0 and the level of congestion ρ = τ − τ0, where τ is travel time from traffic
assignment (note that the subscript a is suppressed for simplicity). This relationship may be
estimated from freeway data using statistical models. The simplest linear regression model reads

u = a1τ0 + b1ρ + c1 (10)

σ = a2τ0 + b2ζρ + c2 (11)

where a1, b1, c1, a2, b2 and c2 are coefficients to be estimated from linear regression. ζ is a pre-
determined parameter to account for the fact that the existence of signal control may increase
variances. ζ = 1 if no signal exists on the link; otherwise ζ is taken from a uniform distribution
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Table 2: Results of the linear regression for the mean-variance model (Equations 10-11) and the
location model (Equation 12)

time-of-day Variance Model Mean Model Location Model
periods a1 b1 c1 R2 a2 b2 c2 R2 a b R2

AM PEAK 0.309 0.870 0.580 0.444 1.127 0.546 -2.056 0.910 0.843 -4.106 0.958
PM PEAK 0.368 0.685 2.967 0.400 1.143 0.563 0.336 0.872 0.860 -3.533 0.964
MIDDAY 0.283 1.076 2.040 0.346 1.100 0.630 -1.145 0.889 0.857 -3.608 0.956

OFF PEAK 0.178 0 -1.031 0.516 1.043 0 -5.854 0.907 0.831 -5.257 0.937

between [1.1, 1.3]. For all 765 links covered by GCM data, u and σ can be obtained from the
empirical distribution and ρ is known from the CMAP travel demand model. Thus, a linear re-
gression can be performed to determine the coefficients, which in turn are employed to estimate
u and σ for arterial streets. We note that a linear model is needed for each of the four time-of-day
periods.

A similar linear model can be constructed to estimate the location parameter µ, which delin-
eates the smallest possible travel time on a link. We note that µ is likely to be smaller than τ0

because motorists may drive well beyond the speed limit or the nominal ”free-flow travel speed”.
Moreover, it seems reasonable to assume that the level of congestion does not affect µ. Thus, the
linear model used to estimate µ is given by

µ = aτ0 + b (12)

The linear regression results for each of the four time-of-day periods are given in Table 2.
As shown, the mean model and the location model (Equation 12) fit the data rather well (high
R2). However, the fitness of the variance model is not impressive. We tried, without much
success, to introduce various forms of non-linearity into the model, such as using the variance
(σ2) instead of the standard deviation on the left hand side of Equation (11), or consider ρ2 on
the right hand side. Apparently, the travel time variances are affected by many other factors not
included in the simple linear model. A more in-depth investigation of the variance model is left
to the future research. Finally, we note that the coefficient of the congestion index is near zero in
both mean and variance models for the off-peak period because congestion is negligible in that
period. Figure 5 reports distributions on a sample link (located on the northbound Columbus Dr.
in the Chicago downtown). The results show that the street is slightly more congested during
the mid-of-day and evening peak periods.

5 Experimental results and discussions

Numerical experiments are presented in this section to show the usefulness of reliable route
guidance and the feasibility of the existing algorithm in solving the real-size problems. For the
first, we consider two real-world routing examples: one is between Chicago downtown and the
O’hare international airport (ORD); another is from the northshore to Chicago south suburbs.
Only the three non-off-peak periods in weekdays are considered. The algorithm FSD-LC was
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Figure 5: Comparison of distributions of link travel time at different time-of-day periods (Link
18548)
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(a) Typical path from downtown to ORD (b) Typical path from ORD to downtown

Figure 6: FSD-admissible paths between Chicago downtown and ORD during the mid-of-day
period of weekdays

coded using MS-C++ and tested on a Windows XP x64 Workstation with two Xenon 3.0GHz
CPUs and 8GB RAM.

5.1 From Chicago downtown to O’hare international airport (ORD)

In this experiment, the intersection of Wabash St. and Washington St. is selected to represent the
Chicago downtown, and the airport is represented by the end of I-190, the highway that serves
the terminals. The most obvious choice for this routing problem, which is also suggested by both
Google Map and Yahoo Maps, is to use freeway I-90/94 and I-90. Our results agree with this
popular routing policy in general but have interesting discrepancies. For the mid-of-day period,
most FSD-admissible paths do heavily use I-90 and I-90/94, and the differences between these
paths are trivial, see Figure 6.

For the morning peak period, however, the reliable route guidance suggests that motorists
should avoid I-90/94 and use an arterial street (N. Milwaukee Ave.) instead, if they wish to have
an on-time arrival probability higher than 44% (to airport) or 62% (from airport) on-time arrival
probability. To arrive at the airport with 95% probability, for example, the path in Figure 7(a)
requires a time budget of 33 minuets 57 seconds while the path mostly using I-90 and I-90/94
needs 37 minutes and 18 seconds. The reliable route guidance thus leads to a 10% saving in
travel budget. In the evening peak of weekdays, motorists who drive from the airport to the city
are recommended to avoid I-90 until they pass the diverge of I-90 and I-94 (see Figure 8(a)). For
95% on-time arrival probability, the path in Figure 8(a) requires a time budget of 34 minutes and
30 seconds, while the path in Figure 8(b) needs 39 minutes and 38 seconds. In both periods,
our results suggest that avoiding the entire or part of the popular freeways will help motorists
budget less time for better reliability.

We note that the path given in Figure 8(b) is actually the best for 50% on-time arrival proba-
bility (i.e. the average performance). At this probability, a motorisit using the path only need to
budget 34 minutes 17 seconds for travel. As a comparison, the more reliable path in Figure 8(a)
needs a slightly higher budget (34 minutes 34 seconds) for 50% probability.

Figure 9 reports the CDFs of travel times on the FSD-admissible paths. Note that the CDFs
during the mid-of-day period are very close to each other. A close look reveals that all these
admissible paths heavily use I-90/94 and I-90, with negligible topological differences. On the
other hands, the CDFs for the morning and evening peak periods are quite different, which are
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(a) from downtown to ORD (b) from ORD to downtown

Figure 7: Shortest paths between Chicago downtown and ORD ) during the morning peak of
weekdays (desired on-time arrival probability = 95%)

(a) 95% on-time arrival probability (b) 50% on-time arrival probability

Figure 8: Shortest paths from ORD to Chicago downtown during the evening peak of weekdays
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Figure 9: Cumulative density functions (CDFs) of travel times on FSD-admissible paths for trips
from Chicago downtown to ORD during different time periods

related to the substantial topological difference of the admissible paths.

5.2 From the northshore to south suburbs

The challenge of this routing problem (see Figure 2) is how to travel through the Chicago down-
town and its congested peripheral area. Typically, motorists have two options: I-90/94 and Lake
Shore Dr. The origin and the destination are deliberately selected so that both options could
become attractive. Specifically, the intersection of Illinois Rd. and Locust Rd. on the northshore,
and the intersection of E.79 St. and S Martin Luther King Dr. in the south suburbs are selected.
The reliable route guidance generally suggests that for weekdays motorists should stay away
from I-90/94, especially for the portion north of Chicago downtown if driving from north to
south. Our results indicate that the popular choice shown in Figure 10(a) is shortest only when
the on-time arrival probability is very low (6% for morning peak, and 18% for mid-of-day). For
the evening peak, this path is not even FSD-admissible. For the mid-of-day and the evening
peak periods, Lake Shore Dr. is more reliable. Figure 10(d) shows that the shortest path during
the mid-of-day period uses the Lake Shore Dr, which guarantees an on-time arrival probability
higher than 43%. The FSD-admissible paths for the evening peak are similar and not reported
separately. For the morning peak, however, Lake Shore Dr. is preferred only if a motorist wants
to arrive on time with a probability lower than or equal to 59% (see Figure 10(c)). For higher
reliability motorists need to use various arterial streets until they are close to downtown, and
then switch I-90/94 (see Figures 10(b)).

Driving from south to north during weekdays is a different story. Experiments show that
the path in Figure 10(a) (reverse direction) represents most of FSD-admissible path with the
exception of the morning peak. For that period, Lake Shore Dr. is always recommended and any
path using I-90/94 is not FSD-admissible.
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(a) (b) (c) (d) (e)

Figure 10: Shortest paths from northshore to south suburbs or in the reverse direction

5.3 Computational performance

Table 3 reports the consumed CPU times for solving each of the two routing problems in either
direction and in both weekends and weekdays 4. As shown, the RASP problem was solved
within 30 seconds in most cases. Considering the complexity of the problem and the sheer size
of the network, the performance is acceptable even from a practical point of view. Note that our
algorithm actually finds FSD-admissible paths from all origins to the destination simultaneously.
Therefore, once the computation is done for one O-D pair, little further efforts are needed to
obtain admissible paths from another origin to the same destination. It may be possible to
expedite the computation if the route guidance is only needed for one O-D pair. This possibility,
however, is not explored in the current implementation.

Table 3 reveals that solving the weekend models generally took shorter CPU times and gen-
erated fewer admissible paths. We conjecture that this is because the roads are less congested on
weekends, and therefore subject to smaller travel time variances. Particularly, the morning and
evening periods on weekends often have only one admissible path; the most obvious choice (i.e.
major freeways) usually prevails in those cases.

In order to better understand the impacts of travel time variances, a sensitivity analysis is
conducted in the following. The focus is given to the variances on arterial streets, since the linear
regression model used to estimate them was not fitted very well. In the analysis, we simply
multiply the estimated variances on arterial by a parameter λ = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. For
each value of λ (called a scenario), five different locations in the CMAP network are selected to
compute the all-to-one reliable shortest paths. Three performance indexes are recorded for each
run: the CPU time, the average and maximum number of FSD-admissible paths at all nodes.
The average of the five runs (each for one destination) are used as the performance index for
the scenario. Figure 11 shows how these indexes vary with the value of λ. Clearly, as the

4In fact, the same travel time distributions are used on arterial streets for both weekends and weekdays. Covered
links, however, have different distributions on weekends and weekdays from observations.
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Table 3: Computation performance of the algorithm in the two routing problems

Weekdays Weekends
AM Peak Mid-of-day PM Peak AM Peak Mid-of-day PM Peak

Downtown to ORD
CPU time 29.58 18.69 16.58 12.25 19.14 8.50

# paths 7 5 4 1 5 1
ORD to downtown
CPU time 29.58 23.70 14.58 15.69 15.36 28.02

# paths 6 2 2 1 2 4
Northshore to south suburbs
CPU time 65.88 74.39 20.42 15.52 46.53 33.74

# paths 7 10 2 2 1 4
South suburbs to northshore
CPU time 60.83 39.00 33.74 14.19 36.25 12.08

# paths 10 6 6 1 3 1

Note: 1) CPU time is measured in seconds; 2) ”# paths” stands for the number of FSD-admissible paths

variances increase, the average size of FSD-admissible paths grows. As a consequence, it takes
the algorithm longer to solve the problem; note that the complexity of the algorithm depends on
the size of FSD-admissible paths (Nie & Wu 2009b). The good news is that the CPU time does
not seem to increase superlinearly with the variances. In fact, the CPU time barely doubled when
the variances on arterial streets become six time higher. The longest average CPU times is still
less than one minute, which remains acceptable for practical purposes.
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Figure 11: Impacts of travel time variances (arterial streets) on computational performance
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6 Summary

The overarching goal of this research is to demonstrate that incorporating reliability measures
into routing decisions is both useful and feasible. To these ends, we present a proof-of-concept
case study of reliable route guidance on a large regional network from the Chicago area.

Our experiments indicate that best paths do vary substantially with the reliability require-
ment, measured in this paper by the probability of arriving on-time or earlier. For motorists who
travel during rush hours and seek high reliability, reliable route guidance could generate up to
10 - 20 % of travel time savings. Interestingly, highly reliable routes often tend to prefer major
arterial to freeways and highways in rush hours. This phenomenon could well have been caused
by the underestimation of travel time variances on arterial streets, recalling that the distributions
on arterial streets were estimated using linear models calibrated from freeway data, which were
not fitted very well for the variances. Nevertheless, staying away from congested freeways dur-
ing rush hours, particularly when you have important appointments, does seem to agree with
conventional wisdom. Such advice appeals to many motorists probably because freeways are
less amenable to effective recourses when uncertainty strikes. The results from this case study
may have provided a piece of empirical evidence to support this perception.

The paper presents and implements methods for constructing link travel time distributions,
which are key inputs to providing reliable route guidance. Since these methods primarily rely on
traffic and travel planning data that are available in many (if not most) large metropolitan areas
in the US, they can be transferred to other regions upon further validation. A major problem
tackled in this research is the data availability on arterial and local streets. Hitherto little traffic
information has been archived for these streets, even on those equipped with intersection-related
sensors. The method proposed in this research is indeed a compromise instead of a resolution.
On the one hand, that the level of congestion affects travel time variances is widely noticed, and
indeed supported by our data. Therefore, predicting variances from a congestion index seems
a reasonable idea. On the other hand, it is likely that travel time variances depend on many
other factors in a complex manner, and therefore the simple linear model may not work very
well. After all, using freeway data to estimate distributions on arterial streets may turn out to
be inappropriate, since these links have quite different characteristics. It will be more desirable
to calibrate the models using travel time data directly collected on arterial streets. Currently, the
research team is seeking to use AVL (automatic vehicle location) data collected by buses. We will
report those results in a subsequent work.

The study also verifies the capability of existing algorithms in solving large-scale reliable
routing problems within reasonable amount of time. As noted, in most cases the algorithm found
all-to-one reliable paths (FSD-admissible paths) within a minute on an up-to-date workstation.
Considering the non-deterministic polynomial complexity of the problem and the sheer size
of the network, the reported performance is deemed satisfactory. To perform reliable route
guidance in real-time (e.g., through an en-vehicle navigation system), further improvements are
still needed. Possible strategies include but are not limited to: imposing higher-order stochastic
dominance to reduce the number of non-dominant paths; adopting approximation methods; and
exploiting the special properties of a one-to-one (instead of all-to-one) shortest path problem. We
leave these further developments also to the future research.

Finally, it is worth noting that the methodologies presented herein can be used in applications
other than reliable route guidance. They can help, for instance, transportation planning agency
understand the level of service in terms of reliability in heavily traveled corridors, or construct
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aggregated travel reliability indexes for the entire or part of the highway network of interest.
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