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ABSTRACT

In this paper we modify our unsupervised anomaly detection
algorithm [1,2] and apply it to highway traffic anomaly analy-
sis. We propose a method to identify anomalies under a prob-
abilistic framework. Instead of determining anomalies based
on the size of each cluster, they are determined in a prob-
abilistic framework. Moreover, we present our findings on
using different features when analyzing real highway vehicle
trajectory data. Based on real highway traffic video data we
demonstrate that the inclusion of certain features, brings us
closer to identifying events that are both anomalous and ab-
normal (based on driving rules).

Index Terms— Object trajectory, anomaly detection,
clustering

1. INTRODUCTION

A system that can automatically detect anomalous events in
highway traffic video, such as accidents, reckless driving,
slow-driving, sudden braking, swerving and speeding, is very
useful for traffic congestion alerting, management and reso-
lution [3]. Therefore there has been an increased interest in
vehicle tracking and trajectory-based analysis.

Towards this task, one possible direction is the explicit
event recognition approach [4, 5]. The system has a priori
knowledge of the normal patterns of traffic events. Models are
trained based on labeled trajectories of each pattern. A new
trajectory is labeled/classified to one of these normal patterns,
or identified as anomaly if it does not fit in any model. The
main drawback of this approach is the need for prior modeling
of each possible pattern.

Alternatively, event models could be built by the system
itself in an unsupervised manner, as the data are acquired. A
commonly used approach in this case is based on the cluster-
ing of the trajectories; the obtained clusters are then used as
a normality model for anomaly detection. Typically, trajecto-
ries are represented by a hidden Markov model (HMM) [6,7]
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or resampled to a fixed-dimension vector [8, 9]. The cluster-
ing methods used include k-means [7, 8], mixtures of Gaus-
sians (MoGs) [10], spectral clustering [6], sequential group-
ing [11], and Support Vector Machines (SVM) [9].

However, since the clustering-based approach is per-
formed on all trajectories -normal and anomalous- a proper
procedure of outlier removal and anomaly identification is
necessary. Some address this concern by removing clusters
with few trajectories [8] or of large covariance [10]. In [7],
only those trajectories that fit the route well were retained
for normality modeling. Geometric considerations in the
SVM feature space were utilized to automatically detect and
remove outliers in [9].

Another concern is the choice of trajectory features used
in the modeling. For example, some used only 2-D position
information [9, 11], while others also included instantaneous
speed within one feature vector [6, 10]. On the other hand,
spatial and dynamic information could be handled separately
as was done in [7, 8].

In this paper we apply our unsupervised anomaly detec-
tion algorithm [1, 2] that has distinct advantages in address-
ing the above concerns, to highway traffic data. Our unsu-
pervised algorithm uses an information-based similarity mea-
sure to model and cluster vehicle trajectories. Specifically,
a probabilistic framework, instead of cluster size threshold-
ing, is used to identify normal/anomalous trajectory clusters,
which is described in Sec. 2. Our algorithm also allows for the
straightforward inclusion of various positional and dynamic
features. Sec. 3 presents our experimental findings. Based
on real highway traffic video data we demonstrate that the
inclusion of certain features, brings us closer to identifying
events that are both anomalous and abnormal (based on driv-
ing rules). We conclude our paper in Sec. 4.

2. CLUSTERING-BASED ANOMALY DETECTION

The proposed unsupervised anomaly detection approach con-
sists mainly of two steps. First, all trajectories extracted from
the video are clustered into groups. Second, the normal tra-
jectory groups are identified using a probabilistic framework.

In our system, a trajectory which is a time sequence is
modeled by an HMM with Gaussian emission probability. At



the clustering step, we measure the distance between trajecto-
ries based on the similarity between their corresponding mod-
els. Specifically, the distance between two trajectories or tra-
jectory groups i, j is defined as

d(i, j) = logLi + logLj − logLij −
1
2
K0 logN, (1)

where Li and Lj denote the likelihoods of i and j being gen-
erated by their own models, Lij is the likelihood of i, j being
generated by a model trained on themselves, N the number
of all trajectories, and K the number of model parameters.

In our algorithm, agglomerative hierarchical clustering is
performed, i.e., the two trajectories or trajectory groups i, j
with smallest d(i, j) as defined in (1) are continuously merged
until there is no d(i, j) < 0. In addition, in order to prevent
model overfitting given few training samples, we update the
clustering results at each merging step. In other words, once
a new HMM is trained after trajectory merging, all the trajec-
tories in the database are reclassified. It is possible that some
incorrectly clustered trajectories of previous steps are associ-
ated to the new HMM. All the HMMs are then retrained based
on the updated trajectory clusters. We refer to this process as
dynamic hierarchical clustering (DHC), which is summarized
below:

1. Initialization: each trajectory in the dataset forms a
group and is fitted with an HMM. There are N groups
with N HMMs;

2. Dissimilarity Measurement: calculate the dissimilarity
d(i, j) for every two groups i and j in the dataset by the
measure in (1);

3. Merging: the two groups î and ĵ with smallest d(̂i, ĵ)
(d(̂i, ĵ) < 0) are merged; if there is no d(i, j) < 0, the
clustering terminates;

4. Reclassification: a new HMM θî ĵ is trained, replac-
ing θî and θĵ ; then based on the (N − 1) HMMs, all
trajectories are reclassified into (N − 1) groups by the
maximum likelihood (ML) criterion;

5. Retraining: (N − 1) HMMs are retrained based on the
updated (N − 1) data groups, respectively;

6. Update: N = N − 1; go back to step 2.

In the following we briefly describe the process for iden-
tifying anomalous trajectories, which is thoroughly presented
in [2]. Let us suppose that all trajectories are clustered into
C groups with C corresponding HMMs. As mentioned in
Sec. 1, some methods utilize the number of trajectories in
each group to identify normal from anomalous groups. In
contrast, we propose a method to identify anomalies under a
probabilistic framework, which utilizes the prior probability
of each group to categorize it.

At the reclassfication step in the DHC algorithm (step 3),
the likelihood of each trajectory being generated from ev-
ery HMM, i.e., Li

c = P (i | θc), is calculated, where i =
1, 2, · · · , N denotes any trajectory in the dataset and θc (c =

1, 2, · · · , C) the trained HMMs. In other words, each tra-
jectory i has probability Li

c of being generated by model θc.
Hence, we may consider each trajectory as being generated
by a mixture model, with each component being one of the C
HMMs, i.e.,

P (i) =
C∑

c=1

[
π(c) · Li

c

]
, (2)

where π(c) is the prior probability of the HMM component
c, which can be estimated by the EM iteration. Initially, we
assume equal prior probabilities, i.e., π(c) = 1/C. In the E-
step, the posterior probability of component c given trajectory
i is estimated by Bayes’ rule,

P (c | i) =
π(c) · Li

c

C∑
r=1

[
π(r) · Li

r

] . (3)

In the M-step, the prior probability of each component can be
computed by averaging P (c | i) for all trajectories, i.e.,

π(c) =
1
N

N∑
i=1

P (c | i). (4)

These updated π(c) are substituted into (3) for another round
of iterations. The iteration continues until π(c) converges.

Based on the mixture model calculated above, groups of
normal events can be determined as those with high π(c) (e.g.,
above average). Other groups are determined as anomalies.

3. EXPERIMENTAL RESULTS

The proposed method was tested with vehicle trajectories
extracted from a real highway traffic video scene. The videos
are from a large database of traffic videos from NGSIM
(http://ngsim.camsys.com/) recorded by cameras located on
top of highways. All trajectories of vehicles are provided by
this database. For our experiments we have used 1000 trajec-
tories from the scene shown in Fig. 1. In this highway section,

Fig. 1. Video scene of an analyzed traffic video

there are 6 traffic lanes and 1 merging lane. All vehicles travel
from left to right. The objective is to analyze all trajectories
and detect those that are anomalous and may cause problems
to normal traffic, without any prior knowledge of the traffic
pattern of this scene. The available trajectory features include
2-D position, instantaneous speed, and acceleration. We em-
phasize that our method can be used with feature sequences



of any dimension. To that effect we present our results se-
quentially as we incorporate more features. Detection results
were validated visually by taking into account the rules of the
road.

We should note that identification of disruptive events (ex-
cluding accidents) in highway video is difficult even for an ex-
perienced observer who is aware of driving regulations. It is
rather cumbersome to identify a speeding car without know-
ing its average speed (attainable through the extraction of its
trajectory). By visual inspection only, human observers actu-
ally rely on the speed of neighboring cars to identify whether
one car is speeding or not. However, without proper speed
measurements and knowledge of the speed limit, a decision is
still impossible. It is evident that automated quantification al-
gorithms are necessary to mine all available information and
identify events that are disruptive to traffic.

3.1. Positional anomalies

When only the 2-D position features were used in trajectory
clustering, we ended up with 7 clusters of normal events, cor-
responding to 7 lanes, respectively, as shown in Fig. 2(a) in
different colors. When only spatial features are concerned,
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(a) 7 clusters of normal trajectories
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(b) Examples of abrupt lane changers

Fig. 2. Results of trajectory analysis based on 2-D positions

as most of the vehicles are moving along their own lanes or
only change lanes slightly in the given section, the normal
events are automatically detected in our method as lane fol-
lowers [12]. Only a few vehicles change lanes abruptly and
they are detected as anomalous events (some examples are
shown in Fig. 2(b).) These anomalies may not be necessarily
disruptive or in violation of the rules of the road (lane changes
are allowed).

3.2. Speed anomalies

Speed is an important parameter of safe driving. Thus in the
second experiment, we have incorporated instantaneous speed
in the feature vector. Based on clustering of the 3-D feature
sequences, more anomalous trajectories are detected. In addi-
tion to the lane changers detected before, we have detected
many speed-related anomalies. These are trajectories with
different speed than most of the trajectories in the same lane.
Fig. 3(a) shows examples of normal velocities. For each lane,
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(a) Examples of normal velocities for each lane
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(b) Examples of speed anomalies
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(c) Examples of acceleration anomalies

Fig. 3. Results of trajectory analysis incorporating dynamics

one trajectory that has the most similar speed to the average
speed of the normal cluster is shown. By observing the spac-
ing between the markers, we can see that the lanes close to
the left side of the highway have higher speed (few points),
while the lanes on the right have lower speed (more points).

Fig. 3(b) shows examples of speed anomalies that are de-
tected in this experiment. It was expected that trajectories on
the left with lower speed and trajectories on the right with
higher speed were determined as anomalies. This is very use-
ful because those traveling with different speed compared to
the normal lane speed are possible causes of traffic congestion
and accidents [13].



3.3. Acceleration anomalies

Speed fluctuation of vehicles is also an important concern
of highway traffic. According to [3], abrupt speed changes
can cause shock waves to form in the traffic stream, rippling
backwards and causing more vehicles to slow down. There-
fore, we have performed experiments by adding the instanta-
neous acceleration of a vehicle as part of our feature vector.
A different type of anomalous trajectories is detected based
on clustering of the 4-D feature sequences. These correspond
to acceleration anomalies, examples of which are shown in
Fig. 3(c). These trajectories have obvious speed changes dur-
ing the length of the observation.

4. CONCLUSION

The goal of this work is to process trajectory data offline,
with the scope of identifying anomalous events. We adopt our
dynamic hierarchical clustering (DHC) method [1, 2] to the
scenario of highway traffic anomaly detection. In our frame-
work anomalies are determined by their prior probabilities,
instead of checking group size (as was previously done). We
have shown that both instantaneous speed and acceleration in-
crease our capability of discerning abnormal driver behavior.
Overall, speed and positional fluctuations detected by our al-
gorithm, form a pattern of lane-change maneuvers that may
cause disruptions to traffic flow (for example wave propaga-
tions [13]) and may increase the occurrence of accidents and
cause congestion.

However, it remains unanswered as to whether an anomaly
was caused as a reaction to an anomaly that occurred in the
vicinity of the vehicle. Therefore, we plan to include vehicle
interaction into the problem formulation. In doing so, the fea-
ture vector needs to be augmented with elements determining
the interaction with other vehicles (e.g., the distance from and
the relative speed with respect to neighboring vehicles). We
will also consider some contextual features, e.g., the average
speed and density of vehicles in a given time window. By
detecting anomalous trajectories we can now analyze the data
and determine the correlation of anomalies in different time
windows. We will be able to infer if the occurrence of an
anomaly creates a disruption in subsequent traffic, e.g., the
reduction of the average speed of subsequent vehicles, the
increase of occurrence of abnormal events, and congestion
build up.
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